
Embedded Target for
OSEK/VDX

For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for OSEK/VDX User’s Guide
© COPYRIGHT 2003–2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may
be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and
Documentation by, for, or through the federal government of the United States. By accepting
delivery of the Program or Documentation, the government hereby agrees that this software or
documentation qualifies as commercial computer software or commercial computer software
documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS
252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights
specified in this Agreement, shall pertain to and govern the use, modification, reproduction,
release, performance, display, and disclosure of the Program and Documentation by the federal
government (or other entity acquiring for or through the federal government) and shall supersede
any conflicting contractual terms or conditions. If this License fails to meet the government’s needs
or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History:
February 2003 Online only Version 1.0 (Release 13+)
June 2004 Online only Version 1.1 (Release 14)
March 2005 Online only Minor update (Release 14SP2)

Contents

Getting Started

1
What Is the Embedded Target for OSEK/VDX? 1-2

What You Need to Know to Use This Product 1-2
Features . 1-4

Hardware and Software Requirements 1-5
Host Platform . 1-5
Hardware Requirements . 1-5
Required MathWorks Products . 1-5
OSEK/VDX Software Requirements 1-6

Installation . 1-8
Installing MathWorks Software . 1-8
Installing Other Required Software 1-8

Getting Help with the Embedded Target for
OSEK/VDX . 1-9
Suggested Reading Path . 1-9
Online Help . 1-10
Demos . 1-10

Configuring the Embedded Target for
OSEK/VDX

2
Setting Up and Verifying Your Installation 2-2

Setting Up Your Target Hardware 2-3
Physical Connections and Communications Ports 2-3
Jumper Settings . 2-3

i

Special Files Provided for Use with the Phytec
phyCORE-MPC555 Board . 2-5

Configuring the Memory Map for the Phytec
phyCORE-MPC555 Board . 2-6

Setting Target Preferences . 2-11
Target Preference Properties . 2-11
Editing Target Preferences . 2-13

Setting Up Your Installation for the OSEKWorks
Target . 2-14
Installing the PhyCORE-555 BSP for OSEKWorks 2-14

Setting Up Your Installation for the ProOSEK Target . . 2-16
Installing the PhyCORE-555 BSP for ProOSEK 2-16

Setting Up SingleStep . 2-18
Installing SingleStep . 2-18
Configuring SingleStep On-Chip 7.6.2 2-19
Configuring SingleStep with Vision 2-20
Configuring phyCORE-MPC555 Jumpers 2-22
Configuring SingleStep Parameters 2-22

Customization Hooks for the OSEKWorks and ProOSEK
Targets . 2-23
Adding Custom Code Generation Options 2-23
Adding Custom Makefile Variables and Rules 2-25

Generating Real-Time OSEK/VDX Applications

3
Introduction . 3-2

The Multirate Example Model . 3-4

Tutorial 1: Creating an Application with
OSEKWorks . 3-6

ii Contents

Before You Begin . 3-6
Configuring the Model . 3-6
Building the Application . 3-11
Downloading and Running the Application 3-12

Tutorial 2: Creating an Application with ProOSEK . . . 3-13
Before You Begin . 3-13
Configuring the Model . 3-13
Building the Application . 3-19
Downloading and Running the Application 3-20

Tutorial 3: Downloading the Application to RAM via
SingleStep . 3-21
Downloading the Generated Code to RAM 3-22
Observing the Generated Code . 3-25

Tutorial 4: Automated Downloading and Debugging . . 3-28

Tutorial 5: Downloading Generated Code to FLASH . . 3-31
The osek_led Demo Model . 3-31
Downloading Generated Code to FLASH with SingleStep

On-Chip 7.6.2 . 3-33
Downloading Generated Code to FLASH with SingleStep

with vision . 3-39

Generating Code, Calibration Data, and Reports

4
Build Directories and Files . 4-2

Build Directory (model_implementation) 4-2
Output Subdirectory (BSP_obj) . 4-3
HTML Report Subdirectory (optional) 4-4

Code Generation Options . 4-5
Target-Specific Options for OSEKWorks Target 4-5
Target-Specific Options for ProOSEK Target 4-8
Setting System and Task Stack Size 4-11
Efficient Use of Persistent Object Libraries 4-12

iii

Custom Debugger Support . 4-13
Restrictions on Code Generation Options 4-14

Generating ASAP2 Files . 4-15
Compiler-Specific Post-Processing Requirements 4-15
ASAP2 File Generation Procedure . 4-16

Code Generation Reports . 4-18

Model Execution

5
Model Execution in the OSEK/VDX Operating

Environment . 5-2

Rate Scheduler Functions . 5-3

Model Rates and OSEK/VDX Tasks 5-4

Startup Task for OSEKWorks . 5-6

Blocks — Categorical List

6
Block Library for Embedded Target for OSEK/VDX . . . 6-2

OSEK Operating System API Blocks 6-4

Data Integrity Blocks . 6-5

Example Driver Block . 6-6

iv Contents

Blocks — Alphabetical List

7

Index

v

vi Contents

1

Getting Started

“What Is the Embedded Target for
OSEK/VDX?” (p. 1-2)

Introduces the product by explaining
what it is, explaining what you need
to know to use the product, and
describing key product features

“Hardware and Software
Requirements” (p. 1-5)

Identifies hardware and software
required for installing and using the
Embedded Target for OSEK/VDX,
including development tools (e.g.,
compilers, debuggers)

“Installation” (p. 1-8) Discussed installation of required
software

“Getting Help with the Embedded
Target for OSEK/VDX” (p. 1-9)

Provides a suggested reading path
and points you to available online
help and demos

1 Getting Started

What Is the Embedded Target for OSEK/VDX?
The Embedded Target for OSEK/VDX® is an add-on product for use with the
Real-Time Workshop® Embedded Coder. It provides tools for developing
real-time applications for the OSEK/VDX operating system standard of the
European automobile industry.

Used with Simulink®, Stateflow®, and the Real-Time Workshop Embedded
Coder, the Embedded Target for OSEK/VDX lets you

• Design and model systems and algorithms.

• Compile, download, run, and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for OSEK/VDX.

What You Need to Know to Use This Product
The information provided with this product assumes you are experienced
with the following products.

MathWorks Products

• MATLAB®

• Simulink

• Real-Time Workshop

• Real-Time Workshop Embedded Coder
Minimally, you should read the following from the "Basic Concepts and
Tutorials" section of the Real-Time Workshop documentation:

"Basic Real-Time Workshop
Concepts"

Introduces general concepts and
terminology related to Real-Time
Workshop

"Quick Start Tutorials" Provides hands-on exercises
that demonstrate the Real-Time
Workshop user interface, code
generation and build process, and
other essential features

1-2

What Is the Embedded Target for OSEK/VDX?

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation. In particular, you should read

• "Data Structures and Code Modules"

• "Code Generation Options and Optimizations"

OSEK/VDX Operating System Standard
Familiarity with the OSEK/VDX operating system standard is
helpful. Useful documents available through the OSEK/VDX Web site
(http://www.osek-vdx.org/) include

• OSEK/VDX Operating System Specification

• OSEK Implementation Language (OIL) Specification

OSEK/VDX Operating System Implementations
You should be familiar with at least one of the two supported OSEK/VDX
operating system implementations and development environments:

Tornado for OSEKWorks for
PowerPC

Wind River Systems, Inc.

ProOSEK 3SOFT, GmbH

Target Boards and Processors
Familiarity with your chosen target board and processor is helpful.
Information on the processor register and memory model are useful in
configuring your debugger. The Embedded Target for OSEK/VDX has been
fully tested with the Phytec phyCORE-MPC555 board, a development board
for the Motorola MPC555 processor. This document assumes you are working
with the Phytec phyCORE-MPC555 development board. Information about
the Motorola MPC555 processor and the Phytec phyCORE-MPC555 board
are available at the vendor Web sites.

1-3

1 Getting Started

Features
Key features of the Embedded Target for OSEK/VDX include

• Target configurations for two major OSEK/VDX operating system
implementations and associated development tools.

OSEKWorks target Supports Tornado for OSEKWorks
for PowerPC 3.0

ProOSEK target Supports ProOSEK 3.0r3

• Supported Board Support Packages (BSPs):

- Fully tested with the Phytec PhyCORE-MPC555 development boards.
Generates executables for deployment to PhyCORE-MPC555 on-board
RAM.

- Generates code for all BSPs provided with the supported OSEK/VDX
implementations.

• Generation of a single- or multirate model or subsystem as an OSEK/VDX
executable. You can download and run executables in RAM or FLASH
memory.

• Real-Time Workshop task management mechanisms within the OSEK/VDX
environment. Maps sample rates in a model to OSEK/VDX tasks.

• Automatic downloading and debugging of code using the SingleStep
debugger.

• OSEK/VDX block library that supports basic OSEK APIs.

• ASAP2 file generation

• Single-precision math library (mathf.h) support (OSEKWorks only)

• Extensible, open implementation; hook file mechanisms ease customization
of code generation options, makefile variables, and rules.

1-4

Hardware and Software Requirements

Hardware and Software Requirements
The following sections identify hardware and software requirements:

• “Host Platform” on page 1-5

• “Hardware Requirements” on page 1-5

• “Required MathWorks Products” on page 1-5

• “OSEK/VDX Software Requirements” on page 1-6

Host Platform
The Embedded Target for OSEK/VDX supports only the PC as a host platform,
running Windows 2000 or Windows XP.

Hardware Requirements
The MathWorks has tested code generated by the Embedded Target for
OSEK/VDX on the Phytec PhyCORE-MPC555 development board, using the
Board Support Package (BSP) provided.

The Embedded Target for OSEK/VDX also generates code with other BSPs
provided by supported OSEK/VDX implementations. However, the generated
code has not been tested on the actual target hardware.

In this document, we assume that you are working with the Phytec
phyCORE-MPC555 development board, and we document specific settings and
procedures for use with the Phytec phyCORE-MPC555 board, in conjunction
with specific cross-development environments. If you use a different
development board, you may need to adapt the settings and procedures.

Required MathWorks Products
The Embedded Target for OSEK/VDX requires the following MathWorks
products:

• MATLAB 7.0 (Release 14)

• Simulink 6.0 (Release 14)

• Real-Time Workshop 6.0 (Release 14)

1-5

1 Getting Started

• Real-Time Workshop Embedded Coder 4.0 (Release 14)

For more information about these products, see

• The online documentation available through the MATLAB Help browser

• The MathWorks Web site, at http://www.mathworks.com; see the "products"
section

OSEK/VDX Software Requirements
The Embedded Target for OSEK/VDX requires one of the following:

• Tornado for OSEKWorks for PowerPC 3.0, from Wind River Systems, Inc.

• ProOSEK 3.0r3 from 3SOFT, GmbH.

Tornado for OSEKWorks for PowerPC 3.0
OSEKWorks includes the Diab cross-compiler and the SingleStep with vision
debugger (Version 7.7.1, for use with VisionPROBE).

The SingleStep debugger is not required for code and executable generation.
However, you can use SingleStep to automatically download, run, and debug
generated executables. If you prefer, you can use a different debugger or other
utility to manually download, execute, and observe the generated application.

The OSEKWorks target supports two versions of SingleStep:

SingleStep with Vision, Version 7.7.1 For use with VisionPROBE. Currently, this
version ships with OSEKWorks. Testing at
The MathWorks indicates that SingleStep
with vision Version 7.7.3 is required for
programming FLASH memory.

SingleStep On-Chip, Version 7.6.2 For use with the Phytec PhyCORE-MPC555
board with an on-board Background Debug
Mode (BDM) connector, or with an external
BDM device, such as the Macraigor Wiggler
(WBDM8xx) BDM.

1-6

http://www.mathworks.com

Hardware and Software Requirements

ProOSEK 3.0r3 from 3SOFT, GmbH
ProOSEK support options are for the MPC555 processor, with GNU tools. If
you want to use the SingleStep debugger, you must obtain it separately. It is
not included with ProOSEK.

Note The GNU tools provided with ProOSEK do not include math library
support. Therefore, Simulink blocks that call math library functions are not
supported by the ProOSEK target.

The SingleStep debugger is not required for code and executable generation.
However, you can use SingleStep to automatically download, run, and debug
generated executables. If you prefer, you can use a different debugger or other
utility to manually download, execute, and observe the generated application.

The ProOSEK target supports two versions of SingleStep:

SingleStep with Vision, Version 7.7.1 For use with VisionPROBE. Testing
at The MathWorks indicates that
SingleStep with vision, Version 7.7.3
is required for programming FLASH
memory.

SingleStep On-Chip, Version 7.6.2 For use with the Phytec
PhyCORE-MPC555 board with
an on-board Background Debug
Mode (BDM) connector, or with an
external BDM device, such as the
Macraigor Wiggler (WBDM8xx)
BDM.

1-7

1 Getting Started

Installation
The following sections discuss installation:

• “Installing MathWorks Software” on page 1-8

• “Installing Other Required Software” on page 1-8

Installing MathWorks Software
To install the Embedded Target for OSEK/VDX and other required
MathWorks software:

1 Obtain a License File or Personal License Password from The MathWorks.
The License File or Personal License Password identifies the products you
can install and use.

2 See the MATLAB installation instructions for your platform.

Installing Other Required Software
Install software identified in “OSEK/VDX Software Requirements” on page
1-6, as explained in OSEK/VDX product documentation.

1-8

Getting Help with the Embedded Target for OSEK/VDX

Getting Help with the Embedded Target for OSEK/VDX
The following sections explain how to get help with the Embedded Target
for OSEK/VDX:

• “Suggested Reading Path” on page 1-9

• “Online Help” on page 1-10

• “Demos” on page 1-10

Suggested Reading Path
We suggest the following reading path to get acquainted with the Embedded
Target for OSEK/VDX and gain hands-on experience with the features most
relevant to your interests:

1 Read “What You Need to Know to Use This Product” on page 1-2 to
understand prerequisite knowledge required to use the Embedded Target
for OSEK/VDX, and to learn about related documentation you may need
to read.

2 Read “Features” on page 1-4 to learn about the general features of the
product.

3 Read Chapter 2, “Configuring the Embedded Target for OSEK/VDX” to
learn how to set up your development environment and configure the
Embedded Target for OSEK/VDX for use with a supported OSEK/VDX
implementation (OSEKWorks or ProOSEK).

4 Read Chapter 3, “Generating Real-Time OSEK/VDX Applications” to learn
how to generate and deploy OSEK/VDX applications on target hardware.
Work through the tutorial that is applicable to your chosen OSEK/VDX
implementation.

5 Read Chapter 4, “Generating Code, Calibration Data, and Reports” to learn
more about code generation options and other details applicable to your
chosen OSEK/VDX implementation.

1-9

1 Getting Started

6 For in-depth information, see

• Chapter 5, “Model Execution” for a description of how generated code
executes in the OSEK/VDX environment.

• Chapter 6, “Blocks — Categorical List” for details on operation of device
driver blocks provided in the OSEK/VDX block library.

7 Review “Demos” on page 1-10. Run the demos to gain hands-on experience
with the target.

Online Help
The following online help is available while using the Embedded Coder for
OSEK/VDX and related products:

• Online help in the MATLAB Help browser. Click the Embedded Coder for
OSEK/VDX product link in the browser’s Contents.

• Online reference help for blocks in the block library. This help is accessible
from block context menus that appear when you right-click a specific block
or library.

Demos
The Embedded Coder for OSEK/VDX provides a number of demos to help you
get familiar with product features.

To run the demos, use one of the following methods:

• While in the MATLAB Help browser, click on the links in the Command
column of the following table.

• From the MATLAB Start button, click Start->Simulink->Embedded
Target for OSEK/VDX->Demos.

• Type demo commands from the MATLAB command prompt. For example,
osek_mrate.

1-10

Getting Help with the Embedded Target for OSEK/VDX

Embedded Target for OSEK/VDX Demos

Command Illustrates

osek_apis Use of the available OSEK OS
API blocks. The OSEK API blocks
provide services such as task and
alarm activation and buffering.
This demo model requires the use of
a Phytec phyCORE-MPC555 board.

osek_asap2 The generation of an ASAP2 file
used for calibration.

osek_led A simple hardware driver that
provides visual feedback as the
model executes on the target
hardware by flashing an LED
on and off. This demo model
requires the use of a Phytec
phyCORE-MPC555 board.

osek_mrate How multirate/multitasking
models execute under OSEK/VDX.

1-11

1 Getting Started

1-12

2

Configuring the Embedded
Target for OSEK/VDX

“Setting Up and Verifying Your
Installation” (p. 2-2)

Gives an overview of the setup
process

“Setting Up Your Target Hardware”
(p. 2-3)

Identifies port connections and
jumper settings required for using
the Embedded Target for OSEK/VDX
with the Phytec PhyCORE-MPC555
board

“Setting Target Preferences” (p. 2-11) Explains how to configure
environmental settings and
preferences associated with the
Embedded Target for OSEK/VDX

“Setting Up Your Installation for the
OSEKWorks Target” (p. 2-14)

Explains how to configure the
Embedded Target for OSEK/VDX for
use with OSEKWorks

“Setting Up Your Installation for the
ProOSEK Target” (p. 2-16)

Explains how to configure the
Embedded Target for OSEK/VDX for
use with ProOSEK

“Setting Up SingleStep” (p. 2-18) Explains how to configure the
SingleStep debugger for downloading
and debugging generated code to the
Phytec PhyCORE-MPC555 board

“Customization Hooks for the
OSEKWorks and ProOSEK Targets”
(p. 2-23)

Explains how to use hook files to
customize target code generation
options, makefile variables, and
makefile rules

2 Configuring the Embedded Target for OSEK/VDX

Setting Up and Verifying Your Installation
The following sections explain how to configure your development
environment for use with the Embedded Target for OSEK/VDX and verify
correct operation. Initial configuration steps are explained in

• “Setting Up Your Target Hardware” on page 2-3

• “Setting Target Preferences” on page 2-11

Note Target preferences properties include information about your local
system, such as the location of the OSEK implementation and debugger.
Be sure to localize these properties appropriately for you installation.

After completing these steps, proceed to the section appropriate to your
development environment:

• If you are using OSEKWorks, see “Setting Up Your Installation for the
OSEKWorks Target” on page 2-14.

• If you are using ProOSEK, see “Setting Up Your Installation for the
ProOSEK Target” on page 2-16.

2-2

Setting Up Your Target Hardware

Setting Up Your Target Hardware
The following sections assume you are working with the Phytec
phyCORE-MPC555 development board. This section gives information on the
required connections and jumper settings for that board, and on special test
and linker command files provided for the phyCORE-MPC555 board.

After setting up your phyCORE-MPC555 board, you must set environment
variables associated with the Embedded Target for OSEK/VDX, as described
in “Setting Target Preferences” on page 2-11.

Physical Connections and Communications Ports
Before you begin working with the Embedded Target for OSEK/VDX, set
up your phyCORE-MPC555 board and connect it to your host computer.
For hardware setup information, see "Interfacing the phyCORE-MPC555
to a Host PC" in the "Getting Started" chapter of the phyCORE-MPC555
Quickstart Instructions manual.

These instructions assume that you have connected the BDM port of your
phyCORE-MPC555 board to the parallel port (LPT1) of your host PC. This
connection is used for host/target communication when downloading code or
debugging via the SingleStep debugger.

The configuration of the host system parallel port depends on both the version
of SingleStep and the type of BDM interface that you use. Consult your
SingleStep documentation for detailed instructions.

Be sure to configure the parallel port of your host PC correctly for your specific
Windows operating system version, as directed by the operating system
documentation.

Jumper Settings
The Embedded Target for OSEK/VDX has been tested by the MathWorks with
the Phytec phyCORE-MPC555 board, using the on-board BDM and jumper
settings indicated in the tables below:

• PhyCORE-MPC555 Jumper Settings for Use with On-Board BDM on page
2-4 gives jumper settings for use with the on-board BDM interface.

2-3

2 Configuring the Embedded Target for OSEK/VDX

• PhyCORE-MPC555 Jumper Settings for Use with External Wiggler BDM
or VisionPROBE on page 2-4 gives jumper settings for use with an external
Wiggler BDM or with VisionPROBE.

• PhyCORE-MPC555 Jumper Settings for Execution from On-Chip FLASH
Memory at Power-On or Reset on page 2-5 gives jumper settings to use
when executing code that has been programmed into FLASH memory.
(Code execution is initiated either by pressing the Reset button or by
cycling power on the board.)

Jumpers that are not shown in the tables are not relevant to the Embedded
Target for OSEK/VDX.

For jumper locations and pin numbers, see the phyCORE-MPC555 Quickstart
Instructions manual.

PhyCORE-MPC555 Jumper Settings for Use with On-Board BDM

Jumper Setting

JP1 3+4

JP2 1+2

JP5-9 closed

JP17 1+2

PhyCORE-MPC555 Jumper Settings for Use with External Wiggler
BDM or VisionPROBE

Jumper Setting

JP1 open

JP2 open

2-4

Setting Up Your Target Hardware

PhyCORE-MPC555 Jumper Settings for Use with External Wiggler
BDM or VisionPROBE (Continued)

Jumper Setting

JP5-9 open

JP17 open

PhyCORE-MPC555 Jumper Settings for Execution from On-Chip
FLASH Memory at Power-On or Reset

Jumper Setting

JP4 1+2

JP15 1+2

JP5 (solder jumper on daughter
card)

1+2 (default)

Special Files Provided for Use with the Phytec
phyCORE-MPC555 Board
The following special files are provided for use with the Phytec
phyCORE-MPC555 board:

• “Board Support Package for Use with OSEKWorks” on page 2-5

• “Test Executable” on page 2-6

Board Support Package for Use with OSEKWorks
The Embedded Target for OSEK/VDX provides a Board Support Package that
supports use of the Phytec PhyCORE-555 board with the OSEKWorks target.
To install this BSP, see “Installing the PhyCORE-555 BSP for OSEKWorks”
on page 2-14.

2-5

2 Configuring the Embedded Target for OSEK/VDX

Test Executable
The Embedded Target for OSEK/VDX provides an executable
(.elf file) for the demo osek_led.mdl. The test file is
matlabroot/toolbox/rtw/targets/osek/osekdemos/bin/osek_led.elf.
This file was generated from the osek_led demo model.

If you are targeting the Phytec phyCORE-MPC555 board, you can use this
file with SingleStep or another debugger to verify that your board, cable, and
jumper setup are correct. The demo osek_led model uses phyCORE-MPC555
specific device driver blocks. When the demo executable is running, the device
driver blinks two LEDs on the phyCORE-MPC555 board at different rates.

You can download and run the test executable by following the procedure
described in “Downloading the Generated Code to RAM” on page 3-22. In
step 2 of that section, use the Browse button to locate the osek_led.elf
file. Then, follow the remaining steps to download the code and start a
debugging session. When the SingleStep session has been started, click
the green Go arrow to start program execution. Observe the LEDs on the
phyCORE-MPC555 board to verify correct operation.

Configuring the Memory Map for the Phytec
phyCORE-MPC555 Board
The Embedded Target for OSEK/VDX provides default linker command files
for use in OSEKWorks and ProOSEK implementations. These command files
support generation of read-only (code) sections, which can be located either in
off-chip RAM or on-chip FLASH. The mapping is as follows:

• From address 0x00000 to 0x40000: read-only sections (256KB)

• Starting at address 0x3f9800: read-write sections (26KB) to the on-chip
RAM area

This mapping, along with the register setup performed by the initialization
(startup) code for generating the Chip Select 1 (CS1) signal, allows you to use
the generated executable in either of the following ways:

• “Downloading and Running the Executable in RAM” on page 2-7

• “Downloading and Running the Executable in FLASH” on page 2-7

2-6

Setting Up Your Target Hardware

Other sections that follow discuss

• “Other Memory Mapping Examples” on page 2-8

• “Modifying the Memory Map for the OSEKWorks Target” on page 2-9

• “Modifying the Memory Map for the ProOSEK Target” on page 2-9

Downloading and Running the Executable in RAM
When you select Download_and_run option, the build process invokes the
SingleStep debugger, configured with the FLASH Enable (FLEN) bit in the
Internal Memory Map register (IMMR) set to 0. SingleStep loads the executable
(.elf file) into off-chip RAM. Thus, by default, SingleStep loads the code
image into off-chip RAM and uses the on-chip RAM for read-write sections.

You can also manually download and run code in RAM with the FLEN bit set to
0. For details on how to do this, see

• “Tutorial 3: Downloading the Application to RAM via SingleStep” on page
3-21

• “Tutorial 4: Automated Downloading and Debugging” on page 3-28

Downloading and Running the Executable in FLASH
If you start and manually configure the SingleStep debugger to connect to
the target with the FLEN bit of IMMR set to 1, the MPC555 board maps the
internal access cycles from 0x0 to 0x2FBFFF to the on-chip FLASH. Thus,
you can connect SingleStep to the target and then use the SingleStep Flash
Programmer dialog box to load the generated executable (.bin file) into the
on-chip FLASH. During reset, if you configure the board to set the FLEN bit to
1, the processor executes the code from on-chip FLASH.

For details on running generated code in FLASH, see

• “Tutorial 5: Downloading Generated Code to FLASH” on page 3-31

• PhyCORE-MPC555 Jumper Settings for Execution from On-Chip FLASH
Memory at Power-On or Reset on page 2-5

2-7

2 Configuring the Embedded Target for OSEK/VDX

See also "Hard Reset Configuration Word" in the MPC555 Users Manual for
information on controlling reset behavior. Also, see the Phytec manuals for
information on jumper settings on the Phytec board, which allow board-level
control over the Hard Reset Configuration Word.

Other Memory Mapping Examples
The linker command files provide other memory mapping examples. In the
following example, off-chip RAM is equally divided between read-only and
read-write sections. This example assumes 256KB of off-chip RAM on the
Phytec board. Larger RAM sizes are also acceptable (but would allow use of
only the first 256KB of RAM).

ram_as_rom: org = 0x2000, len = 0x1e000
ram : org = 0x20000, len = 0x20000

This mapping allocates slightly less than 128KB of memory for the program
(ROM) and 128KB for RAM. The address space below 0x2000 is reserved for
interrupt vectors (refer to the exception memory regions section of linker
command file). If your target board has additional memory and you want to
make it available for larger executable image sizes, you can edit the linker
command file to support the additional memory. For example, to support
1MB of on-board RAM, and allocate 512KB each to read-only and read-write
sections, you would change the mapping as follows.

ram_as_rom: org = 0x2000, len = 0x7e000
ram : org = 0x80000, len = 0x80000

When you increase the size of the memory map, verify that the
phyCORE-MPC555 jumpers are set correctly to ensure proper memory chip
selection. Consult Table 5 in the in the phyCORE-MPC555 Hardware Manual
for proper settings for solder jumpers 18 and 10 on the daughter card module.

Modifying the memory maps or the power-on/reset behavior of the processor
requires a detailed understanding of the internal processor register values
that control memory mapping and chip select signals, and of how they are
wired for your particular board. The register values can be set by

• The Hard Reset Configuration Word

• The debugger when it connects to the target

2-8

Setting Up Your Target Hardware

• The startup code of the executable

Register files for the SingleStep debugger (e.g., *.cfg, *.reg and *.wsp)
control initial register values. BSP files (such as the OSEKWorks
procinit.s)set values when the code is run.

Modifying the Memory Map for the OSEKWorks Target
To modify the phyCORE-MPC555 memory map for programs generated by
the OSEKWorks target,

1 Edit the linker command file, bsp.lk. You can find and edit bsp.lk in
the following location.

<installdir>/TornadoOW_ppc_3.0/target/osekworks/bsp/ppc/phycore555/src

2 Rebuild the phyCORE-MPC555 BSP by using the following commands
from the command prompt window:

cd <installdir>/TornadoOW_ppc_3.0/target/osekworks/bsp/ppc/phycore555/src

.\phycore_make.bat clean

.\phycore_make.bat all

Note that if you run the setup_osekworks_phycorebsp.m script again, it
will overwrite your changes to bsp.lk.

Modifying the Memory Map for the ProOSEK Target
The board configuration specifics required by the ProOSEK environment
come from a board directory. The ProOSEK target provides a
board directory for the phyCORE-MPC555, which is installed using
setup_proosek_phycorebsp.m. The board directory for the phyCORE-MPC555
is matlabroot/toolbox/rtw/targets/osek/proosek/boards/PHYCORE555.

This directory contains

File Description

os.cmd Linker command file.

startup.s Source code for the program
initialization.

2-9

2 Configuring the Embedded Target for OSEK/VDX

File Description

board.h Board specific macros. Clock
configuration is the most important
function defined here.

PHYCORE555.cnf Configuration information about the
board.

target.txt General information about the
board.

These files are copies of files installed with ProOSEK. See your ProOSEK
documentation for more information on these files.

To modify the phyCORE-MPC555 memory map for programs generated by
the ProOSEK target,

1 At a minimum, edit the linker command file os.cmd in the board support
directory. The PHYCORE555.cnf file also contains memory configuration
information, but this file is not used during the code generation,
compilation, or automated download and run process.

2 Run the setup_proosek_phycorebsp script to recopy the BSP. Respond y
to all prompts from the script. (See “Installing the PhyCORE-555 BSP
for ProOSEK” on page 2-16). The setup_proosek_phycorebsp script
copies os.cmd to the boards folder within the ProOSEK installation tree.
Where installdir is the ProOSEK root directory, os.cmd is located in
installdir/boards/PHYCORE555.

You can edit this copy of os.cmd, but we do not recommend doing so,
because if you run the setup_proosek_phycorebsp.m script again, it will
overwrite os.cmd.

2-10

Setting Target Preferences

Setting Target Preferences
This section describes environmental settings associated with the Embedded
Target for OSEK/VDX. These settings, which persist across MATLAB sessions
and different models, are referred to as target preferences. Target preferences
let you specify properties such as the location of your installed OSEK/VDX
implementation and other parameters affecting the generation, building, and
downloading of code.

Target Preference Properties
Embedded Target for OSEK/VDX Preferences Summary on page 2-11
summarizes the preference properties, and their defaults, for the Embedded
Target for OSEK/VDX.

Embedded Target for OSEK/VDX Preferences Summary

Preference Name Description Default or Example Value

Debugger Name of debugger used for
automatic downloading

'SingleStep'
Note: An alternate value
is 'Custom'. If you select
'Custom', you must implement
custom debugger support. (See
“Custom Debugger Support” on
page 4-13.)

DebuggerEXE Name of debugger executable
(must be localized for your
installation)

Default: 'visppc.exe' for
SingleStep with vision
Example: 'bdmp58.exe' (for
SingleStep On-Chip 7.6.2)

DebuggerPath Path to installed debugger
(must be localized for your
installation)

Default:
d:\Applications\WindRiver\
TornadoOW_ppc_3.0\host\sds\
7.7.1

2-11

2 Configuring the Embedded Target for OSEK/VDX

Embedded Target for OSEK/VDX Preferences Summary (Continued)

Preference Name Description Default or Example Value

DebuggerSwitches Switches to set debugger
options (such as port name
and speed) when debugger is
invoked for auto-downloading.
These options apply to
SingleStep. Normally, you
should use the defaults, unless
you use a port other than LPT1
for debugger communications.

Default for SingleStep with
vision
'-V MPC555 -p
visionPROBE:LPT1'
Correct value for SingleStep
On-Chip (7.6.2) with BDM port:
-p LPT1:1

Implementation Name of installed OSEK/VDX
implementation ('osekworks'
or 'proosek')

'osekworks'

ImpPath Path to installed OSEK/VDX
implementation (must be
localized for your installation)

Examples:
'c:\wind\TornadoOW_ppc_3.0'
(for an OSEKWorks
installation)
'c:\ProOSEK' (for a ProOSEK
installation)

StaticLibraryDirectory Directory where static object
libraries are built and stored
(see “Efficient Use of Persistent
Object Libraries” on page 4-12)

Default:
matlabroot\toolbox\rtw\
targets \osek\lib
Examples: matlabroot\work
c:\temp

Note Do not use the default value for the ImpPath, DebuggerPath, or
DebuggerEXE preferences. You must modify these preferences to indicate the
locations on your PC (or network) where your OSEK/VDX implementation
and debugger are installed. Build errors will result if these preferences are
not set correctly.

2-12

Setting Target Preferences

Editing Target Preferences
To configure the target preferences, you use the OSEK Target Preferences
Setup window. This window lets you view, edit, and save the preferences, or
reset the preferences to their default (factory) values.

OSEK Target Preferences Setup Window

To open the OSEK Target Preferences Setup window and edit target
preferences:

1 Click on the MATLAB Start button. Follow the Start ->Simulink
->Embedded Target for OSEK/VDX links.

2 Select OSEK Target Preferences from the Embedded Target for
OSEK/VDX submenu. The OSEK Target Preferences Setup window
opens.

Alternatively, you can open this window by typing osekeditprefs at the
MATLAB prompt.

3 Modify the properties you want to change.

4 Click OK to close the window and make your changes persistent.

2-13

2 Configuring the Embedded Target for OSEK/VDX

Setting Up Your Installation for the OSEKWorks Target
Setting up your installation for the OSEKWorks target is relatively simple:

1 Obtain the required version of OSEKWorks (see “OSEK/VDX Software
Requirements” on page 1-6).

2 Install OSEKWorks, following the Wind River Systems documentation. You
can install OSEKWorks locally or on your network. Be sure to configure
the Windows environment variable LM_LICENSE_FILE appropriately for
the OSEKWorks license manager.

3 Set the target preferences correctly for your installation (see “Setting Target
Preferences” on page 2-11). Make sure that the ImpPath, DebuggerPath,
DebuggerEXE, and DebuggerSwitches preferences are localized correctly
for your installation.

4 If you want to use the Phytec PhyCORE-555 board as your hardware target,
run the setup_osekworks_phycorebsp script to install the PhyCORE-555
Board Support Package, as described in “Installing the PhyCORE-555
BSP for OSEKWorks” on page 2-14.

5 If you want to use the SingleStep debugger for downloading and debugging
code, configure SingleStep as described in “Setting Up SingleStep” on page
2-18. You can use another debugger or download utility to download code
manually. Note, however, that the automatic download/debug features of
the OSEKWorks target require SingleStep.

Installing the PhyCORE-555 BSP for OSEKWorks
The OSEKWorks target provides a BSP for the Phytec PhyCORE-555
development board, including full source code and an M-file installer
script, setup_osekworks_phycorebsp.m. The installer script is located in
matlabroot\toolbox\rtw\targets\osek\osekworks. If you want to use the
PhyCORE-555 as your hardware target, you must install the PhyCORE-555
BSP. To do this,

1 Set the target preferences correctly for your installation (see “Setting
Target Preferences” on page 2-11). Make sure that the ImpPath property is
set correctly, as the installer script uses ImpPath to locate the files.

2-14

Setting Up Your Installation for the OSEKWorks Target

2 At the MATLAB prompt, type

setup_osekworks_phycorebsp

3 The installer displays the path to the location where the BSP will be
installed, and prompts you to continue as shown below.

Ready to create Phytec BSP in directory tree:
'D:\wind\TornadoOW_ppc_3.0\target\osekworks'
Do you want to continue?([y]/n):y

4 The installer copies the required files and prompts you to continue as
shown below.

Successfully copied files into OSEKWorks tree...
Successfully created 'phycore_make.bat'...
Do you want to build the BSP now?([y]/n):y

5 The installer builds the BSP, displaying a number of progress messages.
When the BSP is built, the installer displays the following completion
message.

Finished setup of phycore555.

2-15

2 Configuring the Embedded Target for OSEK/VDX

Setting Up Your Installation for the ProOSEK Target
Setting up your installation for the ProOSEK target is relatively simple:

1 Obtain the required version of ProOSEK (see “OSEK/VDX Software
Requirements” on page 1-6).

2 Install ProOSEK, following the 3SOFT documentation. You can install
ProOSEK locally or on your network.

3 Set the target preferences correctly for your installation (see “Setting Target
Preferences” on page 2-11). Make sure that the ImpPath, DebuggerPath,
DebuggerEXE, and DebuggerSwitches preferences are localized correctly
for your installation.

4 If you want to use the Phytec PhyCORE-555 board as your hardware target,
run the setup_proosek_phycorebsp script to install the PhyCORE-555
Board Support Package, as described in “Installing the PhyCORE-555
BSP for ProOSEK” on page 2-16.

5 If you want to use the SingleStep debugger for downloading and debugging
code, configure SingleStep as described in “Setting Up SingleStep” on page
2-18. You can use another debugger or download utility to download code
manually. Note, however, that the automatic download/debug features of
the OSEKWorks target require SingleStep.

Installing the PhyCORE-555 BSP for ProOSEK
The ProOSEK target provides a BSP for the Phytec PhyCORE-555
development board, including an M-file installer script,
setup_proosek_phycorebsp.m. The installer script is located in
matlabroot\toolbox\rtw\targets\osek\proosek.

If you want to use the PhyCORE-555 as your hardware target, you must
install the PhyCORE-555 BSP. To do this,

1 Set the target preferences correctly for your installation (see “Setting
Target Preferences” on page 2-11). Make sure that the ImpPath property is
set correctly, as the installer script uses ImpPath to locate the files.

2-16

Setting Up Your Installation for the ProOSEK Target

2 At the MATLAB prompt, type

setup_proosek_phycorebsp

3 The installer displays the path to the location where the BSP will be
installed, and prompts you to continue as shown below.

Ready to copy into directory tree:
'D:\3Soft\ProOSEK'
Do you want to continue?([y]/n):y

4 The installer copies the required files, and displays the following completion
message.

Successfully copied files into ProOSEk tree.
Finished setup of phycore555.

2-17

2 Configuring the Embedded Target for OSEK/VDX

Setting Up SingleStep
The SingleStep debugger lets you download, run, and debug code generated
by the Embedded Target for OSEK/VDX on a target board. The following
sections discuss

• “Installing SingleStep” on page 2-18

• “Configuring SingleStep On-Chip 7.6.2” on page 2-19

• “Configuring SingleStep with Vision” on page 2-20

• “Configuring phyCORE-MPC555 Jumpers” on page 2-22

• “Configuring SingleStep Parameters” on page 2-22

After configuring SingleStep, you will also be able to use the debugger directly
to debug generated programs.

We assume that you will be using SingleStep in conjunction with a Phytec
phyCORE-MPC555 board.

Note The SingleStep options and user interface screens discussed below are
based on SingleStep version 7.6.2 and 7.7.1 and may differ from your installed
version of SingleStep, or with future versions of SingleStep. The MathWorks
provides the configuration information below only as a convenience. To
resolve questions or difficulties with SingleStep, refer to the SingleStep
documentation, or contact Wind River Systems.

Installing SingleStep
If you have not already done so, install the SingleStep debugger and confirm
its operation with your phyCORE-MPC555 board before proceeding with
this section. You should select the SStep Professional Suite (MPC5xx)
option during installation. If necessary, please consult your SingleStep
documentation.

2-18

Setting Up SingleStep

Configuring SingleStep On-Chip 7.6.2
If you want to program your generated applications into the
phyCORE-MPC555 FLASH memory using SingleStep On-Chip 7.6.2, do the
following:

1 Obtain the following patch files from Wind River Systems:

• pcflash11_29_00.txt

• pcflash11_29_00.zip

• pcflash3_15_01.txt

• pcflash3_15_01.zip

2 Read the information in pcflash11_29_00.txt file.

3 Apply the update in pcflash11_29_00.zip.

4 Read the information in pcflash3_15_01.txt.

5 Apply the update in pcflash3_15_01.zip.

6 Create a shortcut to SingleStep On-Chip 7.6.2 to start SingleStep with the
proper options. You will use this shortcut when manually downloading code
to RAM or FLASH via SingleStep.

The SingleStep installer adds a shortcut named SingleStep On Chip
(MPC5xx) in your system’s Start/Programs/SingleStep 7.6.2 menu.

a Locate the shortcut file and make a copy of it on your desktop.

b Rename the copy to SingleStep On Chip (MPC5xx) for OSEK Target.

c Right-click on the SingleStep On Chip (MPC5xx) for OSEK Target
shortcut file and edit its Target property to read as follows:

ssteproot\cmd\bdmp58.exe -P -S

matlabroot\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\

phycore-555.wsp

ssteproot is the installed SingleStep directory and matlabroot is the
MATLAB root directory.

2-19

2 Configuring the Embedded Target for OSEK/VDX

Configuring SingleStep with Vision
OSEKWorks includes SingleStep with vision (version 7.7.1). This version
of SingleStep is intended for use with VisionPROBE hardware. To
set up SingleStep with vision and the VisionPROBE for use with the
PhyCORE-MPC555 board and the OSEKWorks target, do the following:

1 Configure VisionPROBE nonvolatile RAM. The OSEKWorks target
provides a MATLAB command that creates and runs a SingleStep
script that configures the VisionPROBE nonvolatile RAM. The script,
visppcinit.cfg, is customized to your environment. To use this command,
type the following at the MATLAB prompt:

osektgtaction('visppcinit');

The following message appears:

Execute SingleStep as: start

d:\Applications\WindRiver\TornadoOW_ppc_3.0\host\sds\7.7.1\cmd\visppc.exe

-r d:\work\visppcinit.cfg

-S D:\Work\R12target\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\

visppcinit.wsp

SingleStep executes, under control of the script. Note that at this point
only the SingleStep command window is visible. The script directs
SingleStep to connect to the VisionPROBE. Then, the script executes
another VisionSHELL script. This script is located within matlabroot, in
the following subdirectory.

\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\rtw_phycore555.reg

The rtw_phycore555.reg. script programs the VisionPROBE nonvolatile
RAM.

After the visppcinit.cfg script completes, the SingleStep command
window opens. When SingleStep has successfully programmed the
VisionPROBE, it displays a message instructing you to cycle power on the
phyCORE-MPC555 board and manually execute the reset command in
the SingleStep command window.

2 Cycle power on the phyCORE-MPC555 board.

2-20

Setting Up SingleStep

3 Enter the reset command. When the reset command returns without
error, VisionPROBE programming is complete, and the VisionPROBE is
communicating with the PhyCORE-MPC555 board correctly.

4 Exit the SingleStep session.

5 Create a shortcut for SingleStep with vision to start SingleStep with the
proper options. You will use this shortcut when manually downloading code
to RAM or FLASH via SingleStep with vision.

a Find the SingleStep with vision executable. The executable is in
OSEKWorksroot\host\sds\7.7.1\cmd\visppc.exe. OSEKWorksroot
refers to the root OSEKWorks directory.

b Create a shortcut to the executable on your desktop.

c Rename the shortcut to SingleStep with vision(MPC5xx)for OSEK
Target.

d Right-click on the SingleStep with vision (MPC5xx) for OSEK
Target shortcut file and edit its Target property to read as follows:

OSEKWorksroot\host\sds\7.7.1\cmd\visppc.exe -P -S

matlabroot\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\

phycore-555.wsp

6 Install SingleStep 7.7.3 and apply patches for programming FLASH
memory.

SingleStep with vision version 7.7.1 does not provide built-in support
for programming the phyCORE-MPC555 FLASH memory. However, an
extension that supports FLASH programming is included with SingleStep
with vision 7.7.3. If you want to program your generated applications into
the phyCORE-MPC555 FLASH memory, install SingleStep with vision
7.7.3 and apply this extension.

SingleStep with vision 7.7.3 is available from the Wind River Web site.
Version 7.7.3 works with licenses provided for version 7.7.1.

a Locate the following .zip file in the SingleStep subdirectory:

cmd/Addin_Flash_Drivers/custom/MPC555/c1.0e

2-21

2 Configuring the Embedded Target for OSEK/VDX

This zip file contains the extension for phyCORE-MPC555 FLASH
programming with SingleStep with vision 7.7.3.

b Unpack the .zip file, which includes the documentation and files
required to apply the extension to SingleStep. The Embedded Target for
OSEK/VDX presumes the .zip file is unpacked in place, and that the
ppcusr.bin file found there is placed in the SingleStep cmd directory.

c Update the SingleStep with vision (MPC5xx) for OSEK Target
shortcut you created in step 5 to point to the new version of SingleStep.

Configuring phyCORE-MPC555 Jumpers
Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Jumper Settings” on page 2-3.

Configuring SingleStep Parameters
The procedure for configuring SingleStep parameters, downloading code to
the target via BDM, and running a debugging session is provided in “Tutorial
3: Downloading the Application to RAM via SingleStep” on page 3-21. Read
that section and generate code. Then, configure SingleStep parameters and
download code as described.

You can also test your SingleStep installation using a test executable provided
with the Embedded Target for OSEK/VDX. See “Special Files Provided for
Use with the Phytec phyCORE-MPC555 Board” on page 2-5.

2-22

Customization Hooks for the OSEKWorks and ProOSEK Targets

Customization Hooks for the OSEKWorks and ProOSEK
Targets

The Embedded Target for OSEK/VDX provides hook file mechanisms that
simplify customization of the system target files (STFs) and template
makefiles (TMFs) for both the OSEKWorks and ProOSEK targets. To use
these mechanisms, you do not have to edit the distributed STFs or TMFs.

Adding Custom Code Generation Options
The target-specific code generation options for the OSEKWorks and ProOSEK
targets are specified by the rtwoptions structures defined in the STFs,
osekworks.tlc and proosek.tlc. The rtwoptions structure is described in
the Real-Time Workshop documentation.

You can extend these options by creating a hook file named
user_osek_options.tlc that specifies additional elements for the rtwoptions
structure. For Real-Time Workshop to find the user_osek_options.tlc file,
the file must be in your current working directory or on your MATLAB path.

To see how this works, do the following:

1 Create the file user_osek_options.tlc such that it includes the following
structure definitions:

/%

BEGIN_RTW_OPTIONS

rtwoption_index = 0;

rtwoption_index = rtwoption_index + 1;

rtwoptions(rtwoption_index).prompt = 'USER OPTIONS';

rtwoptions(rtwoption_index).type = 'Category';

rtwoptions(rtwoption_index).enable = 'on';

rtwoptions(rtwoption_index).default = 1;

% number of items under this category

rtwoptions(rtwoption_index).popupstrings = '';

rtwoptions(rtwoption_index).tlcvariable = '';

rtwoptions(rtwoption_index).tooltip = '';

rtwoptions(rtwoption_index).callback = '';

rtwoptions(rtwoption_index).opencallback = '';

2-23

2 Configuring the Embedded Target for OSEK/VDX

rtwoptions(rtwoption_index).closecallback = '';

rtwoptions(rtwoption_index).makevariable = '';

rtwoption_index = rtwoption_index + 1;

rtwoptions(rtwoption_index).prompt = 'User load factor';

rtwoptions(rtwoption_index).type = 'Edit';

rtwoptions(rtwoption_index).default = '20';

rtwoptions(rtwoption_index).tlcvariable = 'ulfactor';

rtwoptions(rtwoption_index).makevariable = 'ULFACTOR';

rtwoptions(rtwoption_index).tooltip = ['The user load factor '];

rtwoptions(rtwoption_index).callback = '';

rtwoptions(rtwoption_index).opencallback = '';

rtwoptions(rtwoption_index).closecallback = '';

END_RTW_OPTIONS

%/

2 Check that the file is in your current working directory or is on your
MATLAB path.

3 Open the model osek_led.

4 Open the Configuration Parameters dialog. Note the new USER
OPTIONS item that appears under Real-Time Workshop.

5 Click USER OPTIONS. The edit field User load factor appears in a
right-side pane with a default value of 20. This field provides values for the
associated TLC and makefile variables used in the build process.

You can also overload existing options that are defined in the provided STFs
(osekworks.tlc and proosek.tlc). To overload an existing option, use the
same tlcvariable field that is defined in the STF. An example of overloading
an option would be to add a BSP name to the OSEKWorks Board Support
Package menu. In such a case, you should add to the existing menu, not
simply replace it with a single value. In the following example, myBoard is
added to the list of menu items.

rtwoption_index = rtwoption_index + 1;

rtwoptions(rtwoption_index).prompt = 'Modified OSEKWorks Board

Support Package (BSP)';

rtwoptions(rtwoption_index).type = 'Popup';

rtwoptions(rtwoption_index).default = 'phycore555';

rtwoptions(rtwoption_index).popupstrings =

2-24

Customization Hooks for the OSEKWorks and ProOSEK Targets

'axiomcmd565|axiomcme555|estsbc555|motevb555|motmbx8xx|phycore555|myBoard';

rtwoptions(rtwoption_index).tlcvariable = 'bspName';

rtwoptions(rtwoption_index).makevariable = 'OSEK_BOARD';

rtwoptions(rtwoption_index).tooltip = ['Customized Board Support Packages'];

rtwoptions(rtwoption_index).callback = '';

rtwoptions(rtwoption_index).opencallback = '';

rtwoptions(rtwoption_index).closecallback = '';

Adding Custom Makefile Variables and Rules
The TMFs for the OSEKWorks and ProOSEK targets (osekworks.tmf and
proosek.tmf) provide include statements that allow you to specify additional
makefile variables and makefile rules.

The include statement for variables is

-include ..\user_makefile_variables.mk

If the user_makefile_variables.mk file exists, the variables it defines are
added to the generated makefile.The include statement for rules is

-include ..\user_makefile_rules.mk

If the user_makefile_rules.mk file exists, the rules it defines are added to
the rules section of the generated makefile.

2-25

2 Configuring the Embedded Target for OSEK/VDX

2-26

3

Generating Real-Time
OSEK/VDX Applications

“Introduction” (p. 3-2) Provides a suggested path through
the tutorials in this chapter

“The Multirate Example Model”
(p. 3-4)

Describes the demo model used in
subsequent tutorials

“Tutorial 1: Creating an Application
with OSEKWorks” (p. 3-6)

Guides you through an exercise
of building an application for
OSEKWorks from a simple model

“Tutorial 2: Creating an Application
with ProOSEK” (p. 3-13)

Guides you through an exercise of
building an application for ProOSEK
from a simple model

“Tutorial 3: Downloading the
Application to RAM via SingleStep”
(p. 3-21)

Guides you through an exercise
of downloading, executing, and
observing generated code in RAM on
a target board

“Tutorial 4: Automated Downloading
and Debugging” (p. 3-28)

Guides you through an exercise
of automatically downloading and
debugging generated code in RAM
on a target board.

“Tutorial 5: Downloading Generated
Code to FLASH” (p. 3-31)

Guides you through an exercise of
downloading and running generated
code to FLASH memory on a target
board.

3 Generating Real-Time OSEK/VDX Applications

Introduction
This section explains how to use the Embedded Target for OSEK/VDX to
generate, download, and run real-time OSEK/VDX applications on a target
development board.

A suggested path through these tutorials follows:

1 Read and work through “The Multirate Example Model” on page 3-4 to
learn about the demo model that is used in tutorials 1 to 4.

2 Read and work through the tutorial appropriate to the OSEK/VDX
implementation you use. In the tutorial, you will generate a target
executable using your OSEK/VDX implementation and development
environment.

• If you use OSEKWorks, see “Tutorial 1: Creating an Application with
OSEKWorks” on page 3-6.

• If you use ProOSEK, see “Tutorial 2: Creating an Application with
ProOSEK” on page 3-13.

3 Proceed to “Tutorial 3: Downloading the Application to RAM via
SingleStep” on page 3-21 after you have generated an executable. This
tutorial guides you through a typical manual downloading and debugging
session with the SingleStep debugger and a Phytec PhyCORE-MPC555
development board. It will give you some insight into how a generated
program executes under OSEK/VDX.

4 Continue with “Tutorial 4: Automated Downloading and Debugging” on
page 3-28 to learn how to use the automated downloading and debugging
features of the product.

5 The preceding tutorials use a RAM-based application. To learn how to
download and run code in FLASH memory, work through the final “Tutorial
5: Downloading Generated Code to FLASH” on page 3-31.

6 The tutorials introduce you to the basic operation of the Embedded Target
for OSEK/VDX. After you understand the basic feature set, read “Code
Generation Options” on page 4-5 for a complete list of all the options
available.

3-2

Introduction

In addition to the Embedded Target for OSEK/VDX, you need the following
components:

• A supported OSEK/VDX implementation and development environment
(see “Required MathWorks Products” on page 1-5).

• A Phytec PhyCORE-MPC555 development board. The MathWorks has
fully tested and qualified the Embedded Target for OSEK/VDX for use
with the PhyCORE-MPC555 board and the associated Board Support
Package (BSP).

• SingleStep debugger. (See “OSEK/VDX Software Requirements” on page
1-6.) SingleStep is used to download, execute, and observe the generated
application.

Note If you want to use a different development board, debugger, or
download utility for this tutorial, adapt the procedures described below,
especially “Tutorial 3: Downloading the Application to RAM via SingleStep”
on page 3-21. If you plan to use a board other than the PhyCORE-MPC555,
be aware that the Embedded Target for OSEK/VDX does support all the
BSPs provided by OSEKWorks and ProOSEK. However, the MathWorks
has not tested beyond the code generation stage with boards other than the
PhyCORE-MPC555.

3-3

3 Generating Real-Time OSEK/VDX Applications

The Multirate Example Model
All the tutorials in this chapter (except Tutorial 5) use a simple demo model,
osek_mrate. This demo is provided with the Embedded Target for OSEK/VDX:

1 Open the model. If you are reading this document online in the MATLAB
Help browser, you can open the model by clicking this link: osek_mrate.

Alternatively, type the model name at the MATLAB command line.

osek_mrate

2 Create a directory, osek_tut, that is outside the MATLAB directory
structure. Make osek_tut your working directory.

3 Save a local copy of the osek_mrate model to your working directory. You
will work with this copy throughout this exercise.

4 osek_mrate is a multirate model with three sample rates. The Sample
time colors option is enabled for this model. Type Ctrl+D to update the
diagram and color code the blocks and lines in your model to indicate the
sample rates at which the blocks operate.

Observe that the fastest (red) blocks have a sample rate of 1 Hz (sample
time of 1 second); thus the base rate of the model is 1 Hz. The next-fastest
blocks (green) have a sample rate of 2 Hz (sample time of 2 seconds). A
Rate Transition block is inserted between the 1 Hz Gain block and the 2 Hz
Discrete Time Integrator block. The slowest (blue) blocks have a sample
rate of 3 Hz (sample time of 3 seconds).

3-4

The Multirate Example Model

osek_mrate Model

1 To learn how to configure the model and generate code for your OSEK/VDX
implementation, continue with one of the following tutorials:

• If you use OSEKWorks, continue to “Tutorial 1: Creating an Application
with OSEKWorks” on page 3-6.

• If you use ProOSEK, continue to “Tutorial 2: Creating an Application with
ProOSEK” on page 3-13.

3-5

3 Generating Real-Time OSEK/VDX Applications

Tutorial 1: Creating an Application with OSEKWorks
In this tutorial, you build a real-time multitasking application for OSEKWorks
from a simple model. You should already be familiar with Simulink and with
the Real-Time Workshop code generation and build process.

In the following sections, you

1 Configure the model.

2 Generate and examine code and build an executable program.

3 Download the executable code to a target board, initiate a debugging
session, and set breakpoints and observe the execution of the program.

Before You Begin
This tutorial requires specific hardware and software (as described
in “Introduction” on page 3-2) in addition to the Embedded Target for
OSEK/VDX. Be sure that you have

• Set up your development board and connected it to your host PC, as
described in “Setting Up Your Target Hardware” on page 2-3.

• Installed OSEKWorks as described in “Setting Up Your Installation for the
OSEKWorks Target” on page 2-14.

• Installed SingleStep and configured it as described in “Setting Up
SingleStep” on page 2-18.

• Set up your target preferences correctly for OSEKWorks, as described in
“Setting Target Preferences” on page 2-11.

Configuring the Model

1 Open the Configuration Parameters dialog and select Solver. The
Solver parameters should be set as follows:

• Start time: 0.0

• Stop time:100.0

• Type: Fixed-step

3-6

Tutorial 1: Creating an Application with OSEKWorks

• Solver: discrete (no continuous states)

• Periodic sample time constraint: Unconstrained

• Fixed step size: auto

• Tasking mode for periodic sample times: Auto

• Higher priority value indicates higher task priority: Check box
selected

• Automatically handle data transfers between tasks: Check box
cleared

The dialog should appear as shown below.

Note the Tasking mode for periodic sample times is set to Auto. Since
the model has three sample rates, this option causes the model to execute
in multitasking mode. Code generated from the model causes blocks
running at each rate to execute in a separate task.

3-7

3 Generating Real-Time OSEK/VDX Applications

2 Select Real-Time Workshop. The Real-Time Workshop pane displays
as shown below with the following parameter settings

• RTW system target file: osekworks.tlc

• Generate HTML report: Check box selected

• Include hyperlinks to model: Check box selected

• Launch report after code generator completes: Check box selected

• TLC options: None specified

• Make command: make_rtw

• Template makefile: osek_default_tmf

• Ignore custom storage classes: Check box cleared

• Generate code only: Check box selected

3-8

Tutorial 1: Creating an Application with OSEKWorks

3 Clear the Generate HTML report and Generate code only options and
click Apply. In this tutorial, you do not generate a code generation report,
but you do a complete build. The dialog should now appear as shown below.
Note that the Generate button label changes to Build.

4 Select OSEKWorks code generation. The OSEKWorks code
generation pane appears as follows with the following settings.

• OSEKWorks Board Support Package (BSP): phycore555

• Build action: None

• Base task priority: 20

• Task stack size: 512

• System stack size: 1024

• System Counter (TICKSPERBASE): Auto

• Force rebuild of the static libraries used by the model: Check
box cleared

3-9

3 Generating Real-Time OSEK/VDX Applications

• Include ErrorHook function: Check box selected

The OSEKWorks Board Support Package (BSP) menu selection
is particularly important for this tutorial. The phycore555 option is
selected, so that the correct hardware-specific support code for the Phytec
PhyCORE-MPC555 board is linked into the application.

Also note the Build action menu selection is None. The Build action
menu controls whether or not SingleStep is to be invoked at the end of the
build process to download and run or debug the generated code. You will
manually download and run the generated code, rather than automatically
invoke SingleStep, so this option should be set to None. See “Tutorial 4:
Automated Downloading and Debugging” on page 3-28 for a description
of the other Build action options.

5 Click OK to close the Configuration Parameters dialog.

6 Save the model. It is now configured for code generation.

3-10

Tutorial 1: Creating an Application with OSEKWorks

Building the Application
In this section, you will generate code and build a code module suitable for
downloading to the target:

1 Click Build on the Real-Time Workshop pane to initiate the build
process. The build process displays status messages in the MATLAB
Command Window.

On successful completion of the build process, Real-Time Workshop
displays the following message.

Successful completion of Real-Time Workshop build procedure for model:

osek_mrate

2 Observe that the build process has created a build directory,
osek_mrate_osekworks, in your working directory.Use the dir command to
view the contents of the build directory.

dir osek_mrate_osekworks

For this model, executable code has been generated in the phycore555
subdirectory of the build directory. Two executable code files are stored
in this directory.

osek_mrate.elf Code and symbols, suitable for use
with a symbolic debugger such as
SingleStep. You will use SingleStep
to download this file and execute
the code.

osek_mrate.srec Code only (Motorola S-Rec format),
without symbols, suitable for
execution on the target system.

Note that the executables are also copied to the MATLAB working directory
(one level above the build directory) for convenience.

The build process creates a number of other directories and files. For
now, you should be concerned with only the executable code that has been
generated. See “Build Directories and Files” on page 4-2 for information
on the detailed contents of the build directory.

3-11

3 Generating Real-Time OSEK/VDX Applications

Downloading and Running the Application
You can now download and execute code on the target hardware. To learn
how to do so, proceed to “Tutorial 3: Downloading the Application to RAM
via SingleStep” on page 3-21.

3-12

Tutorial 2: Creating an Application with ProOSEK

Tutorial 2: Creating an Application with ProOSEK
In this tutorial, you build a real-time multitasking application for ProOSEK
from a simple model. You should already be familiar with Simulink and with
the Real-Time Workshop code generation and build process.

In the following sections, you

• Configure the model.

• Generate and examine code and build an executable program.

• Download the executable code to a target board, initiate a debugging
session, and set breakpoints and observe the execution of the program.

Before You Begin
This tutorial requires specific hardware and software (as described
in “Introduction” on page 3-2) in addition to the Embedded Target for
OSEK/VDX. Be sure that you have

• Set up your development board and connected it to your host PC, as
described in “Setting Up Your Target Hardware” on page 2-3.

• Installed ProOSEK as described in “Setting Up Your Installation for the
ProOSEK Target” on page 2-16.

• Installed SingleStep and configured it as described in “Setting Up
SingleStep” on page 2-18.

• Set up your target preferences correctly for ProOSEK, as described in
“Setting Target Preferences” on page 2-11

Configuring the Model

1 Open the Configurations Parameters dialog and select the Solver pane.
The Solver parameters should be set as follows:

• Start time: 0.0

• Stop time: 100.0

• Type: Fixed-step

3-13

3 Generating Real-Time OSEK/VDX Applications

• Solver: discrete (no continuous states)

• Periodic sample time constraint: Unconstrained

• Fixed step size: auto

• Tasking mode for periodic sample times: Auto

• Higher priority value indicates higher task priority: Check box
checked

• Automatically handle data transfers between tasks: Check box
cleared

The dialog should appear as shown below.

Note the Tasking mode for periodic sample times is set to Auto. Since
the model has three sample rates, this option causes the model to execute
in multitasking mode. Code generated from the model causes blocks
running at each rate to execute in a separate task.

3-14

Tutorial 2: Creating an Application with ProOSEK

2 Select Real-Time Workshop. The Real-Time Workshop pane displays
as shown below with the following parameter settings:

• RTW system target file: osekworks.tlc

• Generate HTML report: Check box selected

• Include hyperlinks to model: Check box selected

• Launch report after code generator completes: Check box selected

• TLC options: None specified

• Make command: make_rtw

• Template makefile: osek_default_tmf

• Ignore custom storage classes: Check box cleared

• Generate code only: Check box selected

3 Click Browse to open the System target file browser.

3-15

3 Generating Real-Time OSEK/VDX Applications

4 In the browser, select the system target file proosek.tlc.

5 Click Apply to register your selection and then click OK to close the
browser and return to the Real-Time Workshop pane. The Target
selection should now specify proosek.tlc as shown below.

3-16

Tutorial 2: Creating an Application with ProOSEK

6 Clear the Generate HTML report and Generate code only options and
click Apply. In this tutorial, you do not generate a code generation report,
but you do a complete build. The dialog should now appear as shown below.
Note that the Generate button label changes to Build.

7 Select the ProOSEK code generation option. The ProOSEK code
generation pane appears as follows with the following settings.

• ProOSEK Board selection: PHYCORE555

• Build action: None

• Base task priority: 20

• Task stack size: 400

• System counter increment rate. (TIME_IN_NS): Auto

• Force rebuild of the static libraries used by the model: Check
box cleared

• Include ErrorHook function: Check box selected

3-17

3 Generating Real-Time OSEK/VDX Applications

The ProOSEK Board selection menu selection is particularly important
for this tutorial. The PHYCORE555 option is selected, so that the correct
hardware-specific support code for the Phytec PhyCORE-MPC555 board is
linked into the application.

Also note the Build action menu selection is None. The Build action
menu controls whether or not SingleStep is to be invoked at the end of the
build process to download and run or debug the generated code. You will
manually download and run the generated code, rather than automatically
invoking SingleStep, so this option should be set to None. See “Tutorial 4:
Automated Downloading and Debugging” on page 3-28 for a description
of the other Build action options.

8 Click OK to close the Configuration Parameters dialog.

9 Save the model. It is now configured for code generation.

3-18

Tutorial 2: Creating an Application with ProOSEK

Building the Application
In this section, you will generate code and build a code module suitable for
downloading to the target:

1 Click the Build button on the Real-Time Workshop pane to initiate the
build process. The build process begins to display status messages in the
MATLAB Command Window.

2 On successful completion of the build process, Real-Time Workshop
displays the following message.

Successful completion of Real-Time Workshop build procedure for model:

osek_mrate

3 Observe that the build process has created a build directory,
osek_mrate_proosek, in your working directory. Use the dir command to
view the contents of the build directory.

dir osek_mrate_proosek

For this model, executable code has been generated in the PHYCORE555_obj
subdirectory of the build directory. Two executable code files are stored
in this directory:

osek_mrate.elf Code and symbols, suitable for use
with a symbolic debugger such as
SingleStep. You will use SingleStep
to download this file and execute
the code.

osek_mrate.srec Code only (Motorola S-Rec format),
without symbols, suitable for
execution on the target system.

Note that the executables are also copied to the MATLAB working directory
(one level above the build directory) for convenience.

The build process creates a number of other directories and files. For
now, you should be concerned only with the executable code that has been
generated. See “Build Directories and Files” on page 4-2 for information
on the detailed contents of the build directory.

3-19

3 Generating Real-Time OSEK/VDX Applications

Downloading and Running the Application
You can now download and execute code on the target hardware. To learn
how to do so, proceed to “Tutorial 3: Downloading the Application to RAM
via SingleStep” on page 3-21.

3-20

Tutorial 3: Downloading the Application to RAM via SingleStep

Tutorial 3: Downloading the Application to RAM via
SingleStep

In this section, you download the osek_mrate.elf file (generated in the
previous tutorial) to RAM on the target system.

It is assumed that the target system is a Phytec PhyCORE-MPC555
board. You will use the SingleStep debugger to download the generated
osek_mrate.elf file to RAM on the target system, via the BDM port on the
target board. You will then initiate a debugging session, set breakpoints, and
verify real-time operation of the program.

Note The SingleStep options and user interface screens discussed below
are based on SingleStep versions 7.6.2 and 7.7.x and may differ from your
installed version of SingleStep, or with future versions of SingleStep.
The MathWorks provides the configuration information below only as a
convenience. To resolve questions or difficulties with SingleStep, refer to the
SingleStep documentation, or contact Wind River Systems.

Make sure you have done the following before you begin:

• Configure a shortcut to SingleStep that starts up SingleStep with the
correct options (see “Setting Up SingleStep” on page 2-18).

• Connect the BDM port of your development board to parallel port LPT1
of your host PC.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Jumper Settings” on page 2-3.

• Cycle the power (or perform a hard reset) on your development board to set
the board to a known state.

3-21

3 Generating Real-Time OSEK/VDX Applications

Downloading the Generated Code to RAM
To download the generated osek_mrate.elf file to RAM:

1 Start SingleStep using the SingleStep On Chip (MPC5xx) for OSEK
Target shortcut you created previously (see “Configuring SingleStep
On-Chip 7.6.2” on page 2-19).

2 The Debug dialog opens. Click the File tab. Clear the Debug without a
file check box. Then, use the Browse button to locate the osek_mrate.elf
file

3-22

Tutorial 3: Downloading the Application to RAM via SingleStep

3 Click the Connection tab. Choose parallel port or network settings
appropriate to the physical connection you will be using between your PC
and PhyCORE-MPC555 board. As shown below, connection options are
configured for the parallel port LPT1.

4 Click the Processor tab. Confirm that the MPC555 is selected in the
Processor list, as shown.

3-23

3 Generating Real-Time OSEK/VDX Applications

5 Click the Options tab. Make sure that the Reset Target and Load
Application Image check boxes are selected, as shown.

6 Use the default options for all other tabs.

7 Click OK. SingleStep attempts to connect to the processor, and displays a
Debug Status window. This figure shows the Debug Status window after
a successful connection and download.

If you see error messages, you may need to adjust the Delay setting on the
Connection pane (see step 2 above) complete a successful download. If
errors persist, consult the SingleStep documentation to troubleshoot the
connection, or contact Wind River Systems for technical support.

8 Click Close to dismiss the Debug Status window.

3-24

Tutorial 3: Downloading the Application to RAM via SingleStep

9 At this point, the application code is in RAM, and SingleStep has
established a debugging session.

In the next section you will use SingleStep to examine the operation of the
generated code as it executes on the target board.

Observing the Generated Code
In this section, you will display the generated main program in SingleStep,
set a breakpoint, and observe the timing of the slowest (3 Hz) sample rate
of our model:

1 Locate the arrow labeled Files at the bottom of the SingleStep Debug
window. Click this arrow to display the Files selection pane. Select
osek_main.c from the list of files, as shown below.

2 Double-click the selected list element. The source code for osek_main.c
is displayed in the Debug window.

3 The generated code creates several OSEK/VDX tasks. The init task in
the figure below is activated once during the OSEK/VDX startup phase.
The init calls model_initialize and creates three recurrent OSEK/VDX
alarms:

• baseAlarm: OSEK/VDX triggers baseAlarm at intervals of 1 second (i.e.,
at the model’s base rate).

• subAlarm_1: OSEK/VDX triggers subAlarm_1 at intervals of 2 seconds.

• subAlarm_2: OSEK/VDX triggers subAlarm_2 at intervals of 3 seconds.

3-25

3 Generating Real-Time OSEK/VDX Applications

4 The generated code also creates three OSEK/VDX tasks, as shown below,
which are activated by each of the three alarms, and therefore run at the
corresponding rate:

• The baseAlarm task activates the baseRate task. The baseRate task
calls model_step, passing in task identifier (tid) 0, indicating that blocks
running at the model’s base rate should execute.

• The subAlarm_1 task activates the subRate_1 task. The subRate_1 calls
model_step, passing in tid 1, indicating that blocks running at the 2 Hz
rate should execute.

• The subAlarm_2 task activates the subRate_2 task. The subRate_2 calls
model_step, passing in tid 1, indicating that blocks running at the 3 Hz
rate should execute.

3-26

Tutorial 3: Downloading the Application to RAM via SingleStep

5 Set a breakpoint at the beginning of the subRate_2 task, as shown in the
preceding figure. You will now verify that the subRate_2 task executes at
the correct interval (every 3 seconds).

6 Move the cursor into the main text pane of the Debug window. Then press
the F5 key (equivalent to the green Go arrow) to start program execution.
An hourglass cursor is displayed momentarily. Initial activation of the
subRate_2 task occurs almost immediately, and execution stops at the
breakpoint.

7 Subsequent activations of the subRate_2 task occur every 3 seconds. You
can verify this by pressing the F5 key again to resume execution from the
breakpoint. Observe that the hourglass cursor is displayed for 3 seconds
before execution stops at the breakpoint again. This will occur each time
you resume execution.

8 Select Exit from the File menu of the SingleStep window to close the
debugging session.

In the next tutorial, “Tutorial 4: Automated Downloading and Debugging”
on page 3-28, you will work with the automatic downloading and debugging
features of the Embedded Target for OSEK/VDX.

3-27

3 Generating Real-Time OSEK/VDX Applications

Tutorial 4: Automated Downloading and Debugging
Both the OSEKWorks target and the ProOSEK target let you automatically
download generated applications, with the option of initiating a debugging
session. You must have the SingleStep debugger to use these features.

The Build action menu supports the following options:

Download_and_run Invoke SingleStep after the build
process to download the executable
to target RAM and start execution.

Download_and_debug Invoke SingleStep after the build
process to download the executable
to target RAM and start a debugging
session.

None SingleStep is not invoked. You must
download and run or debug the code
manually.

In this tutorial, you rebuild the osek_mrate application used in the previous
tutorials, and use the Download_and_debug option to download the code and
start a debugging session.

Make sure you have done the following before you begin:

• Set the debugger-related target properties (Debugger, DebuggerEXE,
DebuggerPath, Debugger, DebuggerSwitches) correctly for your SingleStep
installation, as described in “Setting Target Preferences” on page 2-11.

• Cycle the power (or perform a hard reset) on your development board to set
the board to a known state:

After completing the preceding tasks, do the following.

1 Open the Real-Time Workshop pane of the Configurations Parameters
dialog and select the target-specific options for your implementation
(OSEKWorks code generation options or ProOSEK code generation
options).

3-28

Tutorial 4: Automated Downloading and Debugging

2 Select the OSEKWorks code generation or ProOSEK code generation
option.

3 Select Download_and_debug from the Build action menu and click Apply.
The figure below shows this option selected for the OSEKWorks target

4 Click Real-Time Workshop to return to the Real-Time Workshop pane.

5 Click Build to initiate the build process. The build process begins to
display status messages in the MATLAB Command Window.

6 On successful completion of the build process, Real-Time Workshop displays
the following messages, indicating that SingleStep has been started up.

Execute SingleStep as: start

\\depot\hub\share\apps\WindRiver\SingleStepDebugger\sds762\cmd\bdmp58.exe -P

-S D:\Work\r12\toolbox\rtw\targets\osek\osek\@osek_diab_tgtaction\phycore-555.wsp

-a d:\work\osek_tut\osek_mrate.elf

-r d:\work\osek_tut\osek_mrate_osekworks\osek_mrate_ram.scr

3-29

3 Generating Real-Time OSEK/VDX Applications

Successful completion of Real-Time Workshop build procedure for model:

osek_mrate

7 SingleStep displays an initial splash screen. After a few seconds, the
SingleStep Debug window is displayed, with the program counter arrow
pointing at the first executable instruction.

8 The executable is now downloaded to the target, and ready to execute
under control of SingleStep. You can now conduct a SingleStep debugging
session, or simply start the program.

9 Select Exit from the File menu of the SingleStep window to close the
debugging session.

You may also want to try setting Build action to Download_and_run. If so,
proceed as follows:

1 Close any existing SingleStep sessions, as multiple SingleStep sessions
can conflict with each other.

2 Return to the OSEKWorks code generation pane.

3 Select Download_and_run for the Build action option and click Apply.

4 Continue starting at step 4 in the preceding procedure. After completion
of the build process, SingleStep starts up and downloads and runs the
program on the target, without a breakpoint or any manual intervention.

In the next and final tutorial, “Tutorial 5: Downloading Generated Code
to FLASH” on page 3-31, you use a different model to generate code and
download it to FLASH rather than RAM.

3-30

Tutorial 5: Downloading Generated Code to FLASH

Tutorial 5: Downloading Generated Code to FLASH
In this tutorial, you generate code from a different model than that used in
the previous tutorials. You will generate, download, and run the generated
program in FLASH rather than RAM.

Before you begin, make sure that you have applied any required patches or
extensions required for your version of SingleStep, as described in one of
the following sections:

• “Configuring SingleStep On-Chip 7.6.2” on page 2-19

• “Configuring SingleStep with Vision” on page 2-20

The osek_led Demo Model
Since you will be executing the generated code from FLASH, you will not be
using an interactive debugging session to observe program execution. The
osek_led demo model is suitable for this tutorial because it can be started via
the Reset button on the target, and because it produces an observable result
directly on the target hardware. Set up the model as follows:

1 Open the model. If you are reading this document online in the MATLAB
Help browser, you can open the model by clicking on the link osek_led.

Alternatively, type the model name at the MATLAB command line.

osek_led

2 Save a local copy of the osek_led model to your working directory. You will
work with this copy throughout this exercise.

3-31

3 Generating Real-Time OSEK/VDX Applications

3 The osek_led model uses two counters and two device driver blocks to
toggle two of the LEDs on the PhyCORE-MPC555 board at different rates.
The model is shown in this figure.

4 Before building the model, open the Configuration Parameters dialog
and open the Real-Time Workshop pane.

5 Clear the Generate code only check box. You may also want to clear
Generate HTML report.

6 Click Apply.

7 Click Build. The build process for the Embedded Target for OSEK/VDX
creates executables in several formats. These files are created in your
working directory:

• osek_led.bin: A FLASH executable for use with SingleStep on-Chip
(7.6.2)

• osek_led.srec: A Motorola S-Rec file used to prepare a FLASH binary
for use with SingleStep with vision (7.7.3)

• osek_led.elf: Suitable for downloading and execution in RAM

3-32

Tutorial 5: Downloading Generated Code to FLASH

8 Your next step depends on which version of SingleStep you are using:

• SingleStep On-Chip 7.6.2: Proceed to “Downloading Generated Code to
FLASH with SingleStep On-Chip 7.6.2” on page 3-33.

• SingleStep with vision: Proceed to “Downloading Generated Code to
FLASH with SingleStep with vision” on page 3-39.

Downloading Generated Code to FLASH with
SingleStep On-Chip 7.6.2
This section describes how to download and debug the generated
osek_led.bin file to FLASH memory on the target, via SingleStep On-Chip
7.6.2.

Connect to Target With FLASH Enabled
Before programming osek_led.bin into FLASH, set the FLASH Enable
(FLEN) bit on the target. In this section, you use SingleStep for this purpose:

1 Start SingleStep using the SingleStep On Chip (MPC5xx) for OSEK
Target shortcut you created previously (see “Configuring SingleStep
On-Chip 7.6.2” on page 2-19).

2 The Debug dialog opens. Click the File tab. Select the Debug without
a file check box, as shown.

3-33

3 Generating Real-Time OSEK/VDX Applications

3 Click the Target Configuration tab and select General from the
Category menu, as shown below. Then select Internal Memory Mapping
Register from the Registers list, as shown.

4 Click Show to open the Internal Memory Mapping Register dialog.
Confirm that the FLEN-flash enable check box is selected as shown below.

5 Then click OK to close the Internal Memory Mapping Register dialog
and return to the Debug dialog.

Note Make sure to click OK, not Cancel, or SingleStep may use settings
other than those shown in the dialog.

3-34

Tutorial 5: Downloading Generated Code to FLASH

6 Click OK. SingleStep attempts to connect to the processor, and displays
a Debug Status window. This figure shows the Debug Status window
after a successful connection.

If you see error messages, consult the SingleStep documentation to
troubleshoot the connection, or contact Wind River Systems for technical
support.

7 Click Close to dismiss the Debug Status window.

Download Code and Execute in FLASH Memory
The next step is to download the generated code (osek_led.bin) to FLASH
memory, using the SingleStep Flash Programmer dialog, and start
execution on the target board:

1 Activate the main SingleStep window. If you do not see a Flash button in
the toolbar, select Tools from the ToolBars menu.

2 Click Flash on the toolbar. The Flash Programmer dialog opens.

3-35

3 Generating Real-Time OSEK/VDX Applications

3 Click the Device tab. In the Device List, double-click INTERNAL. Then
select and double-click MPC555CMF.

4 Make sure that the Start Address field is set to 0x00000000, as shown.

5 Click Apply.

3-36

Tutorial 5: Downloading Generated Code to FLASH

6 Click the Workspace tab. Make sure that the following fields are set:

• Load Target Agent: 0x003F9800

• Working Buffer Size: 0x00000FFC

7 Click the Program/Verify tab. Specify the full path to the generated
osek_led.bin file in the S-Record or Binary Image File field. You
can do this either by navigating to the file via the Browse button, or by
entering the path and filename into the field.

8 The next step is to set the load address of the program in FLASH memory
via the Start fields in the Location panel. The OSEKWorks and ProOSEK
targets generate code requiring different load addresses.

If you generated code using the OSEKWorks target, set the Start fields as
follows:

• Address: 0x0000100

• Bank, Sector: select 1,0

3-37

3 Generating Real-Time OSEK/VDX Applications

If you generated code using the ProOSEK target, set the Start fields as
follows:

• Address: 0x0000000

• Bank, Sector: select 1,0

9 Select the Auto Erase Before Programming and Auto Verify After
Programming options.

10 The Program/Verify settings should now appear similar to the following
figure.

11 Click the Program button. The code is downloaded. During downloading,
a number of progress messages are displayed in the Status panel at the
bottom of the dialog.

12 Upon completing the download process, SingleStep displays a message
box indicating successful completion. Click OK to dismiss the message box.
Then, close the Flash Programmer dialog. Do not save changes to the
Flash Programmer when the Save dialog appears.

3-38

Tutorial 5: Downloading Generated Code to FLASH

13 If FLASH programming fails, you should

• Check that all jumpers are set correctly as described in “Jumper
Settings” on page 2-3.

• Quit SingleStep and repeat the entire procedure starting at “Connect
to Target With FLASH Enabled” on page 3-33. Make sure, in step 5,
that you click OK (not Cancel) when closing the Internal Memory
Mapping Register dialog. Otherwise, SingleStep may use settings
other than those shown in the dialog.

• If errors persist, consult the SingleStep documentation to troubleshoot
the connection, or contact Wind River Systems for technical support.

14 The osek_led code has now been programmed into FLASH. To execute
the code, press the Reset button on the target board. Alternatively, cycle
power on the target board.

15 Observe that LED D4(red) blinks at 1 second intervals, and LED D5(green)
blinks every other second.

Downloading Generated Code to FLASH with
SingleStep with vision
This section describes how to convert the generated osek_led.srec file into a
binary executable (.bin file) and download the executable to FLASH memory
on the target, via SingleStep with vision.

Before you begin, make sure you have installed the extensions described in
step 6 of “Configuring SingleStep with Vision” on page 2-20.

Convert S-Rec File to Binary Executable File
When using SingleStep with vision to download code to FLASH, you must
convert the .srec file generated by the build process into a special binary
format. To do this, use the osektgtaction utility provided by the Embedded
Target for OSEK/VDX.

At the MATLAB command line, use the following syntax

osektgtaction('srectoestbin','model.srec')

3-39

3 Generating Real-Time OSEK/VDX Applications

where model is the name of the.srec file you want to convert - in this case,
osek_led.srec.

The srectoestbin argument directs the osektgtaction utility to run the
SingleStep convert.exe utility to produce an intermediate binary file. A
second SingleStep utility, mpc555fc.exe, generates a final FLASH-compatible
binary, model_est.bin. The final .bin file has a default starting address of
0x00000000.

In this case, the final binary file is osek_led_est.bin.

Connect to Target with FLASH Enabled
Before programming osek_led_est.bin into FLASH, you must set the FLASH
Enable (FLEN) bit on the target, and make sure that the Software Watchdog
Timer is disabled. In this section, you will use SingleStep for this purpose:

1 Start SingleStep using the SingleStep with vision (MPC5xx) for OSEK
Target shortcut you created previously (see “Configuring SingleStep with
Vision” on page 2-20).

2 The Debug dialog opens. Click the File tab. Select the Open connection
only check box, as shown.

3-40

Tutorial 5: Downloading Generated Code to FLASH

3 Click OK. SingleStep attempts to connect to the processor, and displays
a Debug Status window. This figure shows the Debug Status window
after a successful connection.

If you see error messages, consult the SingleStep documentation to
troubleshoot the connection, or contact Wind River Systems for technical
support.

4 Click Close to dismiss the Debug Status window.

5 A connection to the target now exists. From the Windows menu in the
SingleStep toolbar, select the Debug window.

3-41

3 Generating Real-Time OSEK/VDX Applications

6 In the Register pane of the Debug window, scroll and use the +/- tree
view controls to display the IMMR:FLEN and SYPCR:SWE fields, as shown in
this figure.

7 In the Register pane, set the following fields as shown:

• SIU:IMMR:FLEN (Flash Enable) bit to 1

• SIU:SYPCR:SWE (Software Watchdog Enable) bit to 0

FLASH memory is now enabled. In the next section, you will download and
execute the .bin file.

3-42

Tutorial 5: Downloading Generated Code to FLASH

Download Code and Execute in FLASH Memory
The next step is to download the generated code (osek_led_est.bin) to
FLASH memory, using the SingleStep Vision Flash Utility, and start
execution on the target board:

1 Select Vision Flash Utility from the Tools menu in the SingleStep toolbar.

2 Select the Configuration tab in the Flash Programming window.

3 In the Configuration pane, set Devices:MPC555:K1,2,3,M:448x8:1
Device, as shown above.

If this selection is not available, the installation of SingleStep 7.7.3
extensions was probably not successful. See “Configuring SingleStep
with Vision” on page 2-20 and make sure that the FLASH programming
extensions are installed correctly. If problems persist, contact Wind River
Systems for technical support.

3-43

3 Generating Real-Time OSEK/VDX Applications

4 Select the Files tab in the Flash Programming window. Use the Add
button to navigate to the generated osek_led_est.bin file in the build
directory. After finding the.bin file, use the Open button to place this
file in the Binary files list.

5 Select osek_led_est.bin file in the Binary Files list. Click Toggle
Enable.

3-44

Tutorial 5: Downloading Generated Code to FLASH

6 Select the Program tab in the Flash Programming Window.

7 Click the Erase button to be sure the FLASH is erased before programming.

8 Click the Program button to program the binary executable into FLASH.

9 Close the Flash Programming Window.

10 If FLASH programming fails, you should

• Verify that the jumpers are set correctly as described in “Jumper
Settings” on page 2-3.

• Quit SingleStep and repeat the entire procedure starting at “Connect
to Target with FLASH Enabled” on page 3-40. Make sure, in step 8,
that your settings are applied correctly. Otherwise, SingleStep may use
settings other than those shown in the dialog.

3-45

3 Generating Real-Time OSEK/VDX Applications

• If errors persist, consult the SingleStep documentation to troubleshoot
the connection, or contact Wind River Systems for technical support.

11 The osek_led code has now been programmed into FLASH. To execute
the code, press Reset on the target board. Alternatively, cycle power on
the target board.

12 Observe that LED D4(red) blinks at 1 second intervals, and LED D5(green)
blinks every other second.

3-46

4

Generating Code,
Calibration Data, and
Reports

“Build Directories and Files” (p. 4-2) Summarizes the directories and files
used in the build process

“Code Generation Options” (p. 4-5) Describes the options specific to the
OSEKWorks target and ProOSEK
target and notes requirements and
restrictions that apply to the current
release

“Generating ASAP2 Files” (p. 4-15) Explains how to generate ASAP2
files from a model

“Code Generation Reports” (p. 4-18) Explains how to generate HTML
code generation reports from the
build process

4 Generating Code, Calibration Data, and Reports

Build Directories and Files
The build directory structure and files created by the Embedded Target
for OSEK/VDX build process differ slightly from the standard Real-Time
Workshop Embedded Coder build directories. Directories and Files Created
by Build Process on page 4-2 summarizes the directories and files created
during the build process.

Directories and Files Created by Build Process

Build Directory (model_implementation)
The top-level build directory is created in your working directory, using the
naming convention model_implementation, where model is the name of the
generating model and implementation is name of the selected OSEK/VDX
implementation. For example, mymodel_osekworks would be the build
directory name where the OSEKWorks target generates code for the
OSEKWorks implementation from a model mymodel.

4-2

Build Directories and Files

The build directory contains

• Standard generated files including source code (model.c, model.h),
makefile (model.mk), model.bat file and others as described in the
"Data Structures and Code Modules" section of the Real-Time Workshop
Embedded Coder documentation.

• OSEK Implementation Language (OIL) file (model.oil) defining
OSEK/VDX system objects such as tasks, alarms, and counters.

• Generated main program (osek_main.c) that invokes the standard
OSEK/VDX kernel startup (StartOS) function. The main program
also defines model execution tasks and other tasks (such as system
initialization) that are activated under control of OSEK/VDX. The format in
which tasks are defined is dependent on the OSEK/VDX implementation.

• ASAP2 files are generated if you select the Generate ASAP2 file option.

Output Subdirectory (BSP_obj)
This subdirectory contains the final output of the build process and includes
the executable code files as well as other files produced by the build process.
Usually, you will need to access only the executable, in order to download it to
the target hardware.

Executables are named after the generating model, with a file extension
indicating the file format (e.g., model.elf or model.srec). The executable
format is determined by your development system.

Note that the model.elf, model.srec, and model.map files are copied to
the MATLAB working directory (one level above the build directory). This
conforms to Real-Time Workshop Embedded Coder conventions and provides
easier access to these files.

The naming convention for the output subdirectory is BSP_obj, where BSP is
the name of the board support package (BSP) selected. (For the OSEKWorks
target, the BSP is selected from the OSEKWorks Board Support Package
(BSP) menu. For the ProOSEK target, the BSP is selected from the
ProOSEK Board selection menu.) For example, if the phycore555 BSP is
selected, the output directory is named phycore555_obj. This convention is
adopted because the final executable contains hardware-specific code linked
in from the selected BSP.

4-3

4 Generating Code, Calibration Data, and Reports

This directory also contains C files (oil.c, oil.h) derived from the
model.oil file. Additional artifacts of the build process, such as object and
list files and a linker map file, are also located in this directory.

HTML Report Subdirectory (optional)
This directory is created if the Generate HTML report option is selected
(see “Code Generation Reports” on page 4-18). It contains the HTML code
generation report files.

4-4

Code Generation Options

Code Generation Options
The Embedded Target for OSEK/VDX is an extension of the Real-Time
Workshop Embedded Coder embedded real-time (ERT) target configuration.
The Embedded Target for OSEK/VDX inherits the code generation options
of the ERT target, as well as the general code generation options of the
Real-Time Workshop. These options are available from the Real-Time
Workshop pane of the Configuration Parameters dialog; they are
documented in the Real-Time Workshop documentation and the Real-Time
Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the
Embedded Target for OSEK/VDX, and are unsupported or restricted in their
operation. See “Restrictions on Code Generation Options” on page 4-14 for
details.

Target-Specific Options for OSEKWorks Target
The OSEKWorks Target has two panes of target-specific code generation
options that are available from the Real-Time Workshop pane of the
Configuration Parameters dialog. To view or change the settings of these
options,

1 Open the Configuration Parameters dialog.

2 Select Real-Time Workshop to open the Real-Time Workshop
configuration pane.

3 Click Browse and select osekworks.tlc from the System target
file browser. An OSEKworks code generation option appears under
Real-Time Workshop in the selection list.

4-5

4 Generating Code, Calibration Data, and Reports

4 Click OSEKWorks code generation. The OSEKWorks code
generation pane appears as shown below.

• OSEKWorks Board Support Package (BSP): Specifies a supported BSP
for use in code generation. The default is phycore555.

4-6

Code Generation Options

• Build action: Controls what action, if any, the build process takes after
the target executable is created. The options are

Download_and_run Invoke SingleStep to download the
executable to target RAM and start
execution.

Download_and_debug Invoke SingleStep to download the
executable to target RAM and start
a debugging session.

None (default) SingleStep is not invoked. You
must download and run or debug
the code manually.

It is possible to invoke a debugger other than SingleStep to execute build
actions. See “Custom Debugger Support” on page 4-13 for guidelines on
how to do this.

• Base task priority: Assigns a priority to the base rate (fastest) task in
the model. Each OSEK/VDX task is assigned a priority from 0 to 255, with
higher numbers signifying higher priority. Subrate tasks are assigned
successively lower numbers. The default is 20.

• Task stack size: Allocates a stack size, in bytes, to each task in the model.
The default is 512. (See “Setting System and Task Stack Size” on page 4-11.)

• System stack size: Allocates a stack size, in bytes, to the OSEK/VDX
kernel. The default is 1024. (See “Setting System and Task Stack Size” on
page 4-11.)

• System Counter (TICKSPERBASE): Specifies the number of ticks
per second for the OSEK/VDX system counter. (This parameter sets the
TICKSPERBASE property of the SystemTimer object.)

You can specify System Counter as an integer or as Auto. If you specify
Auto, the Embedded Target for OSEK/VDX determines a minimum value
for TICKSPERBASE, thus minimizing interrupt and counter overhead. Auto
is the default value.

Note that TICKSPERBASE also affects the frequency of rescheduling that is
attempted on return from Category 2 Interrupt Service Routines (ISRs),
because the system counter is a Category 2 ISR.

4-7

4 Generating Code, Calibration Data, and Reports

• Force rebuild of the static libraries used by the model: Controls
whether object file libraries (such as rtwlib) referenced by the model are
rebuilt during the build process. By default, this option is cleared, and
existing object libraries are not rebuilt. Since rebuilding such libraries
may involve compiling a large number of source files, we recommend the
default. See “Efficient Use of Persistent Object Libraries” on page 4-12 for
further information.

• Include ErrorHook function: Generates an OSEK ErrorHook
function. The function originates from the file osekerrorhook.tlc
in matlabroot/toolbox/rtw/targets/osek/osek and is generated in
osek_main.c. You can change the behavior of the ErrorHook function by
modifying osekerrorhook.tlc. By default, this option is selected.

Target-Specific Options for ProOSEK Target
The ProOSEK Target has two panes of target-specific code generation options
that are available from the Real-Time Workshop pane of the Configuration
Parameters dialog. To view or change the setting of these options,

1 Open the Configuration Parameters dialog.

2 Select Real-Time Workshop to open the Real-Time Workshop
configuration pane.

3 Click Browse and select proosek.tlc from the System Target File
Browser. A ProOSEK code generation option appears under
Real-Time Workshop in the selection list.

4-8

Code Generation Options

4 Click ProOSEK code generation. The ProOSEK code generation
pane appears as shown below.

• ProOSEK Board selection: Specifies a supported BSP for use in code
generation. The default is PHYCORE555.

4-9

4 Generating Code, Calibration Data, and Reports

• Build action: Controls what action, if any, the build process takes after
the target executable is created. The options are

Download_and_run Invoke SingleStep to download the
executable to target RAM and start
execution.

Download_and_debug Invoke SingleStep to download the
executable to target RAM and start
a debugging session.

None (default) SingleStep is not invoked. You
must download and run or debug
the code manually.

It is possible to invoke a debugger other than SingleStep to execute build
actions. See “Custom Debugger Support” on page 4-13 for guidelines on
how to do this.

• Base task priority: Assigns a priority to the base rate (fastest) task in
the model. Each OSEK/VDX task is assigned a priority from 0 to 255, with
higher numbers signifying higher priority. Subrate tasks are assigned
successively lower numbers. The default is 20.

• Task stack size: Allocates a stack size, in bytes, to each task in the model.
The default is 400. (See “Setting System and Task Stack Size” on page 4-11.)

• System counter increment rate (TIME_IN_NS): Specifies the period, in
nanoseconds, for the OSEK/VDX system counter.

You can specify System counter as an integer or as Auto. If you specify
Auto, the Embedded Target for OSEK/VDX determines a maximum value
for TIME_IN_NS, thus minimizing interrupt and counter overhead. The
default is Auto.

• Force rebuild of the static libraries used by the model: Controls
whether object file libraries (such as rtwlib) referenced by the model are
rebuilt during the build process. By default, this option is cleared, and
existing object libraries are not rebuilt. Since rebuilding such libraries
may involve compiling a large number of source files, the default is
recommended. See “Efficient Use of Persistent Object Libraries” on page
4-12 for further information.

4-10

Code Generation Options

• Include ErrorHook function: Generates an OSEK ErrorHook
function. The function originates from the file osekerrorhook.tlc
in matlabroot/toolbox/rtw/targets/osek/osek and is generated in
osek_main.c. You can change the behavior of the ErrorHook function by
modifying osekerrorhook.tlc. By default, this option is selected.

Setting System and Task Stack Size
The stack sizes allocated to the kernel and the application tasks are defined,
in the OIL file, by the OSEK implementation. The OSEK implementation
may optimize total memory required for all stacks by sharing memory based
on application-specific constraints. The stacks are then statically allocated by
the OIL configuration process and the build process.

Both the OSEKWorks and ProOSEK targets let you specify the task stack size.
In addition, the OSEKWorks target lets you specify the system stack size.

When you set the System stack size or Task stack size parameters, it is
important to consider factors that affect stack usage at run time. The System
stack size requirements can be affected by

• The nesting and type of interrupts

• The number and type of tasks in the application

• OSEK operating system API calls made at runtime

Similarly, Task stack size requirements can be affected by

• Some types of interrupts

• OSEK operating system API calls made at runtime

• Calls to application functions

Consult your OSEK implementation’s documentation to understand and
determine the worst case system and task stack size requirements. Set the
System stack size and/or Task stack size parameters accordingly.

4-11

4 Generating Code, Calibration Data, and Reports

Efficient Use of Persistent Object Libraries
Because rebuilding object libraries can involve compilation of large numbers
of source code files, it is desirable to minimize the rebuilding of such libraries
when possible. The Embedded Target for OSEK/VDX provides flexible
mechanisms that let you control how and when object libraries are rebuilt.

The template makefiles provided with the Embedded Target for OSEK/VDX
have the ability to create and use persistent object libraries associated with

• The Real-Time Workshop library, rtwlib (rtw/c/libsrc)

• Certain blocksets that provide a rtwmakecfg.m file that specifies that a
related library may be persistent

The template makefiles manage these libraries through make macros and
through token expansion within the bounds of the token pair.

|>START_PRECOMP_LIBRARIES<|
.
.
.
|>END_PRECOMP_LIBRARIES<|

The template makefiles use the StaticLibraryDirectory target preference
property (see “Setting Target Preferences” on page 2-11). The value of the
StaticLibraryDirectory property propagates (on a per-model/per-build
basis) to the make macro STATIC_LIBDIR in the model_makevars.mk file.

When STATIC_LIBDIR is not empty, it should contain the path to an existing
directory where persistent object libraries are stored. When the compilation
of a model refers to a persistent object library, the build process will use a
library from this location, or if the library does not exist, will create it there.

The Force rebuild of the static libraries used by the model option will
cause all such libraries to be rebuilt, even if they already exist.

4-12

Code Generation Options

Custom Debugger Support
This section provides general guidelines for supporting a debugger other than
SingleStep for use in the build process. Implementing custom debugger
support requires knowledge of MATLAB object-oriented programming. See
"Classes and Objects" in the MATLAB programming documentation if you
are unfamiliar with this topic.

The Build action options (described in “Code Generation Options” on page
4-5) are supported by MATLAB OOPS classes and by the Debugger target
preferences (see “Target Preference Properties” on page 2-11).

By default, the Debugger target preference is set to 'SingleStep'. When
'SingleStep' is selected, the build process invokes methods of the
osek_singlestep_tgtaction class to execute the required build actions,
such as starting SingleStep and downloading a generated executable. The
implementation files for the osek_singlestep_tgtaction class and the
package containing it located in

matlabroot/toolbox/rtw/targets/osek/osek/@osek_singlestep_tgtaction

An alternate value for the Debugger target preference is 'Custom'. This
value is provided as a mechanism to invoke an alternative debugger or
downloading utility. When 'Custom' is selected, the build process expects
that a user-defined package osek_custom_tgtaction, containing a class
osek_custom_tgtaction, exists.

You must implement the osek_custom_tgtaction package and
class. We suggest that you start by studying the code in the
@osek_singlestep_tgtaction directory to understand how build actions are
supported with SingleStep.

Next, copy the entire @osek_singlestep_tgtaction directory to a new
directory:

matlabroot/toolbox/rtw/targets/osek/osek/@osek_custom_tgtaction

In the @osek_custom_tgtaction directory, rename
osek_singlestep_tgtaction.m to osek_custom_tgtaction.m.
Edit osek_custom_tgtaction.m, changing every occurrence of
'osek_singlestep_tgtaction' to 'osek_custom_tgtaction'.

4-13

4 Generating Code, Calibration Data, and Reports

At this point, you will have implemented a skeletal osek_custom_tgtaction
package that will function identically to the osek_singlestep_tgtaction
package, where the Debugger target preference is set to 'Custom'.

You must now customize the run and debug methods (implemented
respectively in run.m and debug.m) in your new package directory. We cannot
prescribe the exact changes you must make; these modifications depend on
the requirements of your debugger or the other tools you want to invoke.

Restrictions on Code Generation Options
Some ERT code generation options are not supported (or are restricted) by the
Embedded Target for OSEK/VDX. The following unsupported options appear
grayed out in the dialog displays and you cannot select them:

• Suppress error status in real-time model data structure

• Create Simulink (S-Function) block

• MAT-file logging

• File customization template

• Generate an example main program

If you select the following Interface pane options, the Embedded Target for
OSEK/VDX ignores the option or issues an error message during the build
process.

Option Restriction

ISO_C specified for Target
floating-point math environment
under Software environment

For ProOSEK target only, error if
selected; build process terminates

Generate reusable code selected
under Code interface

Error if selected; build process
terminates

External mode specified for
Interface under Data Exchange

Error if selected; build process
terminates

4-14

Generating ASAP2 Files

Generating ASAP2 Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2
is a standard description you use for data measurement, calibration, and
diagnostic systems. The Embedded Target for OSEK/VDX lets you export
an ASAP2 file containing information about your model during the code
generation process.

Before you begin generating ASAP2 files with the Embedded Target for
OSEK/VDX, you should read "Generating ASAP2 Files" in the Real-Time
Workshop documentation. That section describes how to define the signal and
parameter information required by the ASAP2 file generation process.

The process of generating an ASAP2 file from your model with Embedded
Target for OSEK/VDX is similar to that described in the Real-Time Workshop
Embedded Coder documentation. However, there are certain differences and
limitations. In the following sections, we describe these differences and
limitations and how they affect the procedure for generating ASAP2 files.

The osek_asap2 demo provides an example of the Embedded Target for
OSEK/VDX ASAP2 file generation feature.

Compiler-Specific Post-Processing Requirements
The Embedded Target for OSEK/VDX generates an initial ASAP2 file during
the code generation process. At this point, the addresses of signals and
parameters on the target system are unavailable, since the code has not been
compiled and linked. The initial ASAP2 file contains placeholders for the
unresolved addresses.

To supply the required memory addresses, the generated code must be
compiled and a compiler-generated MAP file must be created.

After the build process, if the Embedded Target for OSEK/VDX detects the
presence of the ASAP2 file and a MAP file in the required format, it performs
a post-processing phase. During this phase, the MAP file is used to propagate
the required address information back into the ASAP2 file.

4-15

4 Generating Code, Calibration Data, and Reports

MAP file formats differ between compilers, so the post processing phase
is compiler-specific. The Embedded Target for OSEK/VDX provides a
post-processing mechanism for the compilers supplied with each supported
OSEK implementation.

The names of the ASAP2 file and the MAP file derive from the source model.
The MAP file is generated in the output subdirectory and copied to the
working directory (see “Build Directories and Files” on page 4-2). The ASAP2
file is written to the build directory.

ASAP2 File Generation Procedure
To generate a model’s data definition in ASAP2 format, using the Real-Time
Workshop Embedded Coder,

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the desired parameters and signals in the model to be
ASAP2.Parameter and ASAP2.Signal objects in the MATLAB workspace.

3 For each ASAP2 data object, configure the RTWInfo StorageClass property
to be one of the following:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

This configures the data objects so that their corresponding declarations in
the generated code are unstructured global storage declarations.

4 Configure the remaining properties as desired for each ASAP2 data object.

5 On the Optimization pane of the Configuration Parameters dialog,
select the Inline parameters check.

Note that you should not configure the parameters associated with your
data objects as global (tunable) parameters in the Model Parameter
Configuration dialog box. If a parameter that resolves to a Simulink
data object is configured using the Model Parameter Configuration

4-16

Generating ASAP2 Files

dialog box, the dialog box configuration is ignored. You can, however,
use the Model Parameter Configuration dialog box to configure other
parameters in your model.

6 On the Real-Time Workshop pane, click Browse to open the System
target file browser. In the browser, select any Embedded Real-Time
Target and click OK.

7 In the Interface field on the Interface pane, select ASAP2.

8 Select the Generate code only check box on the Real-Time Workshop
pane.

9 Click Apply.

10 Click Generate code.

For more information on generating ASAP2 files, see "Generating ASAP2
Files" in the Real-Time Workshop documentation.

4-17

4 Generating Code, Calibration Data, and Reports

Code Generation Reports
The Embedded Target for OSEK/VDX supports an extended version of the
Real-Time Workshop Embedded Coder HTML code generation report.

The extended code generation report consists of several sections:

• The Generated Source Files section of the Contents pane contains a
table of source code files generated from your model. You can view the
source code in the MATLAB Help browser. Hyperlinks within the displayed
source code let you view the blocks or subsystems from which the code
was generated. Click on the hyperlinks to view the relevant blocks or
subsystems in a Simulink model window.

In addition to the standard information and hyperlinks to generated code,
the report generated by The Embedded Target for OSEK/VDX includes
links to the following generated files:

- model.oil: OSEK Implementation Language (OIL) file.

- oil.c, oil.h: C definitions and includes derived from the OIL file.

• The Summary section lists version and date information, Target Language
Compiler (TLC) options used in code generation, and Simulink model
settings.

• The Optimizations section lists the optimizations used during the build,
and also those that are available. If you chose options that generated less
than optimal code, they are marked in red. This section can help you select
options that will better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

• The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of
the generated code.

4-18

Code Generation Reports

To generate a code generation report and view the profiling report,

1 Open the Configuration Parameters dialog and select Real-Time
Workshop.

2 Under Documentation, select Generate HTML report. By default,
Include hyperlinks to model and Launch report after code
generation completes are also selected, as shown in the display below.

You can deselect either or both these options if desired.

Include hyperlinks to model Includes hyperlinks to blocks in
the generating model in the report
files. When you view the report
files in MATLAB, clicking on these
hyperlinks display and highlight
the referenced blocks in the model.

Launch report after code
generation completes

Automatically opens a MATLAB
Web browser window and displays
the code generation report. If
you do not select the option, you
can open the code generation
report (model_codegen_rpt.html
or subsystem_codegen_rpt.html)
manually in a MATLAB Web
browser window, or in another Web
browser manually.

4-19

4 Generating Code, Calibration Data, and Reports

3 Follow the usual procedure for generating code from your model or
subsystem.

Real-Time Workshop writes the code generation report files in the html
subdirectory of the build directory. The top-level HTML report file is named
model_codegen_rpt.html or subsystem_codegen_rpt.html.

Note You can also view the HTML report files, as well as the generated
code files, in the Simulink Model Explorer. See the Real-Time Workshop
documentation for details.

4-20

5

Model Execution

“Model Execution in the OSEK/VDX
Operating Environment” (p. 5-2)

Explains how the Embedded
Target for OSEK/VDX maps the
generating model’s sample rates into
corresponding OSEK/VDX tasks

“Rate Scheduler Functions” (p. 5-3) Explains how multirate models
apply rate scheduler functions

“Model Rates and OSEK/VDX Tasks”
(p. 5-4)

Explains how model rates map to
OSEK/VDX tasks

“Startup Task for OSEKWorks”
(p. 5-6)

Explains how Real-Time
Workshop handles an OSEKWorks
application’s startup task

5 Model Execution

Model Execution in the OSEK/VDX Operating Environment
This discussion assumes that you are familiar with the Real-Time Workshop
Embedded Coder task management scheme, as described in the "Data
Structures and Program Execution" section of the Real-Time Workshop
Embedded Coder documentation.

Programs generated by the Embedded Target for OSEK/VDX follow
conventions similar to programs generated by Real-Time Workshop
Embedded Coder. All the same tasking cases (single-rate/singletasking,
multirate/singletasking, and multirate/multitasking) are supported.

However, the Embedded Target for OSEK/VDX maps the generating model’s
sample rates into corresponding prioritized tasks, executing under the control
of OSEK/VDX task management mechanisms. All lower-level timing and
task scheduling functions are handled by OSEK/VDX. As described in the
following sections, this approach results in some efficiencies that simplify and
streamline the generated main program.

5-2

Rate Scheduler Functions

Rate Scheduler Functions
In multirate models, scheduling counters are maintained by a generated rate
scheduler function. The rate scheduler function is called by model_step, on
each base rate time step of the model.

In a multirate model that executes in SingleTasking mode, the rate
scheduler function is named rate_scheduler. In a multirate model
that executes in MultiTasking mode, the rate scheduler function is
named rate_monotonic_scheduler. To handle the multitasking case,
rate_monotonic_scheduler maintains flags that indicate when the Rate
Transition blocks in a model need to execute. In models that require an
absolute time reference, these flags are also used to update absolute time
appropriately.

5-3

5 Model Execution

Model Rates and OSEK/VDX Tasks
To map multitasking execution of a multirate model to OSEK/VDX, the
OSEKWorks target automatically defines, for each rate in the model, an
OSEK/VDX Task that runs at the corresponding rate and priority. Each
OSEK/VDX Task calls the model_step function, passing in an appropriate tid
argument in accordance with Real-Time Workshop conventions (i.e., the base
rate task gets tid 0, and subrate tasks get tids 1..numTasks-1).

Each OSEK/VDX Task is activated by a corresponding cyclic OSEK/VDX
Alarm. OSEK/VDX is responsible for servicing hardware timer interrupts and
triggering Alarms at the appropriate rates.

The priority of the base rate (fastest) task is assigned by the user, via the
Base task priority parameter (see “Code Generation Options” on page
4-5). OSEK/VDX Task priorities decrease from the base rate task to each of
the subrate tasks, such that the slowest rate has the lowest priority. Tasks
are scheduled preemptively.

This approach allows for several simplifications to be made to the generated
main program (osek_main.c):

• Each OSEK/VDX Task is specified to have only single activation. Therefore,
OSEK/VDX error handling mechanisms can detect timer overrun
conditions, so it is not necessary to maintain overrun flags separately.

• The base rate task does not schedule subrate tasks to run; instead
OSEK/VDX does the scheduling for the model rates. Therefore, the
rt_OneStep function is no longer required. Likewise, the event flags array
used by rt_OneStep, and the SetEventsForThisBaseStep function are
not needed.

The rate_monotonic_scheduler function is still needed to maintain flags for
the proper execution of Rate Transition blocks in the model. When the base
rate task calls model_step(0), the rate_monotonic_scheduler is called to
maintain those flags.

5-4

Model Rates and OSEK/VDX Tasks

The following figure illustrates this model execution approach for the
OSEK/VDX target environment.

5-5

5 Model Execution

Startup Task for OSEKWorks
Under OSEKWorks conventions, Board Support Packages are configured to
start the OSEK kernel directly via the StartOS() API, instead of invoking
StartOS() from the main() function of the application code.

Real-Time Workshop expects the application to have at least one AUTOSTART
task. In the case of generated model code, this is the init task. Therefore, the
normal entry point (the main() function) is never used. The main() function
is generated within osek_main.c, but only to define the symbol main and for
consistency with other C programs.

The unused main() function for OSEKWorks consumes 36 bytes in the .text
section of the code.

5-6

6

Blocks — Categorical List

“Block Library for Embedded Target
for OSEK/VDX” (p. 6-2)

Provides an overview of the
Embedded Target for OSEK/VDX
block library.

“OSEK Operating System API
Blocks” (p. 6-4)

Summarizes the blocks in the OSEK
Operating System API category.

“Data Integrity Blocks” (p. 6-5) Summarizes the blocks in the Data
Integrity category.

“Example Driver Block” (p. 6-6) Summarizes the block in the
Example Driver category.

6 Blocks — Categorical List

Block Library for Embedded Target for OSEK/VDX
The Embedded Target for OSEK/VDX provides a library of blocks
(oseklib.mdl) that support a subset of the OSEK/VDX API. The following
figure shows the Embedded Target for OSEK/VDX block library.

A demonstration model, osek_apis, provides a working example of the blocks
in the Embedded Target for OSEK/VDX block library.

In addition to the above blocks, an example device driver block for the Phytec
PhyCORE-MPC555 board is provided (see PhyCORE-MPC555 LED). This block
is convenient for providing visual feedback from a generated program. It does
not provide OSEK-specific functionality.

The Embedded Target for OSEK/VDX automatically maps model code to
OSEK/VDX scheduling mechanisms (see “Model Execution in the OSEK/VDX
Operating Environment” on page 5-2). The Embedded Target for OSEK/VDX
block library gives you more explicit control over the mapping of the generated
model code to OSEK/VDX task management functions. This level of control
is useful (for example) when you want to use model-based design and code
generation to fit generated code into a larger application on a task-by-task
basis.

6-2

Block Library for Embedded Target for OSEK/VDX

The blocks in the Embedded Target for OSEK/VDX block library let you
specify mappings to OSEK/VDX at a Function-Call Subsystem level. When
you use these blocks for code generation, you introduce changes in code
execution behavior. It is important to recognize and understand such effects
when using these blocks.

One effect of using the blocks in this library is that the execution of the model
code on the target may produce results that do not match simulation behavior.
This is because OSEK API blocks (e.g., the Activate Task block) deviate from
the rate monotonic scheduling that the automatic mapping performs.

A second effect is related to data integrity. A Simulink signal is said to possess
data integrity when the values on the signal are consistent such that all bytes
(both within a scalar and across the scalars that form a signal vector), are
computed during the same time sample and thus form a meaningful value.
Normally, when data is passed between blocks of differing rates in the model,
Simulink enforces the use of Rate Transition blocks. This requirement, in
conjunction with rate monotonic scheduling, ensures data integrity and also
deterministic, repeatable results.

When Embedded Target for OSEK/VDX library blocks are used in a model,
however, Simulink does not fully control the relative priorities at which model
tasks run. Function-Call Subsystems (generated as OSEK Tasks) can be
preempted while they are in the process of reading or writing input or output
data. This can cause inconsistencies in the data that is read or written. To
avoid this issue and enforce data integrity, you can use the Protected RT
and Unprotected RT blocks in the Embedded Target for OSEK/VDX library.
Simulink enforces the use of these blocks to ensure data integrity. However,
use of these blocks does not guarantee generated code will produce results
that exactly match simulation results.

In some applications, data integrity protection is not required, and greater
efficiency can be achieved by omitting the data integrity protection code. In
such cases, you can use the Unprotected RT block.

For details about a specific block, click Help on the Block Parameters dialog
for the block, or access the block reference page through Help.

6-3

6 Blocks — Categorical List

OSEK Operating System API Blocks
Activate Task Generate an OSEK/VDX API

ActivateTask call

Set Alarm Generate an OSEK/VDX API
SetAbsAlarm or SetRelAlarm call

6-4

Data Integrity Blocks

Data Integrity Blocks

Note The OSEK Async Rate Transition and Unprotected OSEK Async Rate
Transition blocks are now obsolete. They are included only for compatibility
with older models. Use the Protected RT and Unprotected RT blocks as a
replacement. For details, see Protected RT and Unprotected RT. Also, see
rate transition block information in the Real-Time Workshop documentation.

OSEK Async Rate Transition
(Reader)

Ensure data integrity for data
signals before crossing an async rate
boundary

OSEK Async Rate Transition
(Writer)

Ensure data integrity for data
signals after crossing an async rate
boundary

Protected RT Ensure data integrity for data
transfers in multirate systems

Unprotected RT Ensure that data transfers within
a multirate system occur with
minimum latency and target size

6-5

6 Blocks — Categorical List

Example Driver Block
PhyCORE-MPC555 LED Demo driver for LEDs D4 and D5 on

Phytec PhyCORE-MPC555 board

6-6

7

Blocks — Alphabetical List

Activate Task

Purpose Generate an OSEK/VDX API ActivateTask call

Library Embedded Target for OSEK/VDX

Description The Activate Task block is designed to be connected to the trigger input
of a downstream Function-Call Subsystem. It explicitly defines the
function-call subsystem as an OSEK/VDX task and activates the Task
via a call to the OSEK/VDX API function ActivateTask. The CALL input
to the Activate Task block can be driven by any function-call output,
such as the output of a Function-Call Generator block or a Stateflow
function-call event.

The generated OSEK task is activated from the model context in which
the Activate Task block is placed. The priority of the generated task,
relative to the calling Activate Task block’s task priority, is important to
consider. The caller’s priority is typically assigned based on

• The caller’s sample rate relative to the model’s base sample rate

• The Configuration Parameters setting for Base task priority.
This option is on the OSEKWorks code generation options or
ProOSEK code generation options pane under Real-Time
Workshop.

If the downstream task priority is set to be lower than the caller’s,
the ActivateTask call puts the task in the ready queue of the OSEK
scheduler on the target environment. This differs from simulation,
where the function-call subsystem executes immediately upon being
triggered and runs to completion before the calling block returns.

If, however, the priority specified for the downstream function-call
subsystem is higher than the task in which the caller resides, the target
behavior will match the simulation behavior.

The Preemptive scheduling parameter of the Activate Task block
lets you specify the scheduling behavior of the task as either full
preemptive or nonpreemptive, as allowed by OSEK/VDX. You should
also consider this parameter when comparing execution on the target
to simulation behavior. The Activate Task Block has the effect of

7-2

Activate Task

detaching the execution of the Function-Call Subsystem from the caller.
As a consequence, data read into and written from the function-call
subsystem can be in an inconsistent state. To ensure data integrity,
Simulink requires that OSEK Async Rate Transition (Reader or Writer)
blocks are used with all inputs and outputs of for Function-Call
Subsystems that are triggered by Activate Task blocks.

When the Activate Task block is driven by a block, its behavior is
modified. The Activate Task block does not generate its own call to
ActivateTask; instead, the alarm generated by the Set Alarm block
activates the task. See Set Alarm for additional details.

Dialog
Box

Task name
Name of OSEK task in the generated code.

Task priority
Priority of the generated OSEK task. The priority must be unique
within the model.

Stack size (bytes)
Number of bytes allocated for this task’s stack.

7-3

Activate Task

Preemptive scheduling

• FULL: OSEK will allow preemption of the task by the scheduler.

• NONE: The Task cannot be preempted by any other task.

7-4

OSEK Async Rate Transition (Reader)

Purpose Ensure data integrity for data signals before crossing an async rate
boundary

Library Embedded Target for OSEK/VDX

Description The OSEK Async Rate Transition (Reader) block ensures data integrity
for data signals that are entering an asynchronous rate transition
boundary.

Note This block is now obsolete. It is included only for compatibility
with older models. Use the Rate Transition block in the Simulink Signal
Attributes library as a replacement. For details, see "Rate Transition
Block Options" in the Real-Time Workshop documentation.

The OSEK Async Rate Transition Block (Reader) block is normally
paired with an OSEK Async Rate Transition Block (Writer) block.
This reader/writer pair uses two buffers and the OSEK/VDX
EnableAllInterrupts and DisableAllInterrupts calls to provide a
mechanism that ensures proper, exclusive access to control variables for
the double buffers.

Dialog
Box

Sample time
Sample time of the block.

7-5

OSEK Async Rate Transition (Writer)

Purpose Ensure data integrity for data signals after crossing an async rate
boundary

Library Embedded Target for OSEK/VDX

Description The OSEK Async Rate Transition (Writer) block ensures data integrity
for data signals that are exiting an asynchronous rate transition
boundary.

Note This block is now obsolete. It is included only for compatibility
with older models. Use the Rate Transition block in the Simulink Signal
Attributes library as a replacement. For details, see "Rate Transition
Block Options" in the Real-Time Workshop documentation.

The OSEK Async Rate Transition Block (Writer) block is normally
paired with an OSEK Async Rate Transition Block (Reader) block.
This reader/writer pair uses two buffers and the OSEK/VDX
EnableAllInterrupts and DisableAllInterrupts calls to provide a
mechanism that ensures proper, exclusive access to control variables for
the double buffers.

Dialog
Box

Sample time
Sample time of the block.

7-6

PhyCORE-MPC555 LED

Purpose Demo driver for LEDs D4 and D5 on Phytec PhyCORE-MPC555 board

Library Embedded Target for OSEK/VDX

Description The PhyCORE-MPC555 LED driver block provides a simple means for
visual feedback, via an LED, for programs running on the PHYTEC
phyCORE-MPC555 board.

The PhyCORE-MPC555 LED driver block uses the following bits of
the MPIOSMDR register:

• Bit 0: mapped to green LED at location D5

• Bit 1: mapped to red LED at location D4

The selected bit is toggled on or off by the input signal.

For an example of the use of this block, see the osek_led demo model.
This model is described in “The osek_led Demo Model” on page 3-31.

Dialog
Box

LED Choice
This option lets you select either the green (D5) or red (D4) LED to
be driven by the input signal. The color of the block icon changes
from green to red, depending upon your selection.

7-7

Protected RT

Purpose Ensure data integrity for data transfers in multirate systems

Library Embedded Target for OSEK/VDX

Description The Protected RT block transfers data from the output of a block
operating at one rate to the input of another block operating at a
different rate. Block parameters allow you to trade data integrity
and deterministic transfers for faster response and lower memory
requirements. By default, the Protected RT block ensures data integrity.

Note See the online Real-Time Workshop documentation for a
discussion of data integrity and deterministic data transfer.

The block supports the following options:

• Nondeterministic data transfer with minimum latency and assured
data integrity but increased memory requirements. This is the
default.

• Deterministic transfer of data with data integrity between blocks
operating at different speeds at the cost of maximum latency of data
transfer.

To specify this option, select Ensure data integrity during data
transfer and Ensure deterministic data transfer.

• Minimum latency and target size at the cost of nondeterministic data
transfer and possible loss of data integrity.

To specify this option, clear Ensure data integrity during data
transfer and Ensure deterministic data transfer.

See "Sample Rate Transitions" in the online Real-Time Workshop
documentation for more information.

7-8

Protected RT

Note The Rate Transition, Zero-Order Hold, and Unit Delay blocks
also enable transfer of data between blocks operating at different
rates. However, you should use the Protected RT block for this purpose
because it is customized for Embedded Target for OSEK/VDX use.

Data Type
Support

The Protected RT block accepts signals of any data type supported by
Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see the
Simulink documentation.

Dialog
Box

Ensure data integrity during data transfer
Specifies that generated code ensure the integrity of data
transferred by this block. If you select this option and the transfer
is nondeterministic (see Ensure deterministic data transfer

7-9

Protected RT

option below), the generated code uses double-buffering to prevent
the fast block from interrupting the data transfer. Otherwise the
generated code uses a copy operation to effect the data transfer.
The copy operation consumes less memory than double-buffering,
but is also interruptible and hence can lead to loss of data during
nondeterministic data transfers.

Select this option if you want the generated code to operate
with maximum responsiveness (that is, nondeterministically)
and assured data integrity. See the online Real-Time Workshop
documentation for more information.

Ensure deterministic data transfer (maximum delay)
Specifies that generated code transfer data at the sample rate of
the slower block (that is, deterministically). If you do not select
this option, which is the default, data transfers occur as soon as
new data is available from the source block and the receiving
block is ready to receive the data. This avoids the need to delay
transfers, thus ensuring that the system operates with maximum
responsiveness. However, it also means that transfers can occur
unpredictably, which is undesirable in some applications. See the
online Real-Time Workshop documentation for more information.

Initial conditions
Applies only to Slow to fast transitions. It specifies the initial
output at the beginning of a transition when there is not yet any
output from the slow block connected to the Protected RT block’s
input. The default is 0.

Output port sample time
Specifies the output rate to which the input rate is converted.
The default value (-1) specifies that the output rate is inherited
from the block to which the Protected RT block’s output port is
connected. See the Simulink documentation for information on
how to specify the output rate.

7-10

Protected RT

Characteristics
Direct Feedthrough No for slow-to-fast transitions

that are protected (Ensure data
integrity during data transfer
selected); otherwise, yes.

Sample Time Supports discrete-to-discrete
and discrete-to-continuous
transitions.

Scalar Expansion Yes, of input.

Dimensionalized Yes

Zero Crossing No

7-11

Set Alarm

Purpose Generate an OSEK/VDX API SetAbsAlarm or SetRelAlarm call

Library Embedded Target for OSEK/VDX

Description The Set Alarm block generates either an absolute or relative OSEK
alarm via OSEK/VDX API calls, SetAbsAlarm or SetRelAlarm call.

The Set Alarm block has two modes of operation, controlled by the Call
only at startup option. When you select this option, the SetAbsAlarm
or SetRelAlarm call is only generated once, in the model initialization
function. In this mode:

• No signal should be connected to the CALL input of the Set Alarm
block.

• The Cyclic parameter can be set to nonzero values.

When you clear the Call only at startup option, the Set Alarm block
generates a SetAbsAlarm or SetRelAlarm call in the model context in
which the Set Alarm block is placed. In this mode:

• The CALL input to the alarm is valid and can be driven by any
function-call source.

• You cannot set the Cyclic parameter to nonzero values. This
disallows multiple activations of the downstream task.

Note that the Set Alarm block immediately activates the downstream
task during simulation.

7-12

Set Alarm

Dialog
Box

Alarm name
The name of the OSEK alarm in the generated code.

Increment
A numeric value n used as an argument in the generated call to
SetAbsAlarm or SetRelAlarm to specify one of the following:

• For a relative alarm, the number of ticks of the OSEK system
counter that must elapse before the task assigned to the alarm
is activated

• For an absolute alarm, the value that the OSEK system counter
must equal for the task assigned to the alarm to be activated

See the OSEK/VDX documentation for more information.

Type
Specifies whether the alarm is relative or absolute.

Call only at startup
Specifies that the alarm be activated only during OSEK startup.

7-13

Set Alarm

Cyclic
If Call only at startup is enabled, a nonzero value c used as
an argument in the generated SetAbsAlarm or SetRelAlarm call
to specify cyclic task activation. The alarm activates the task
repeatedly every c ticks.

7-14

Unprotected RT

Purpose Ensure that data transfers within a multirate system occur with
minimum latency and target size

Library Embedded Target for OSEK/VDX

Description The Unprotected RT block transfers data from the output of a block
operating at one rate to the input of another block operating at a
different rate while ensuring minimum latency and target size. If
necessary, you can select the option Ensure deterministic data
transfer to ensure deterministic transfers at the cost of increased
latency.

Note See the online Real-Time Workshop documentation for more
information.

Data Type
Support

The Unprotected RT block accepts signals of any data type supported
by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see the
Simulink documentation.

7-15

Unprotected RT

Dialog
Box

Ensure deterministic data transfer (maximum delay)
Specifies that generated code transfer data at the sample rate of
the slower block (that is, deterministically). If you do not select
this option, which is the default, data transfers occur as soon as
new data is available from the source block and the receiving
block is ready to receive the data. This avoids the need to delay
transfers, thus ensuring that the system operates with maximum
responsiveness. However, it also means that transfers can occur
unpredictably, which is undesirable in some applications. See the
Real-Time Workshop documentation for more information.

Output port sample time
Specifies the output rate to which the input rate is converted.
The default value (-1) specifies that the output rate is inherited
from the block to which the Unprotected RT block’s output port is
connected. See the Simulink documentation for information on
how to specify the output rate.

7-16

Unprotected RT

Characteristics
Direct Feedthrough Yes

Sample Time Supports discrete-to-discrete
and discrete-to-continuous
transitions.

Scalar Expansion Yes, of input.

Dimensionalized Yes

Zero Crossing No

7-17

Index

IndexA
Activate Task block 7-2
applications

building OSEKworks target 3-11
building ProOSEK target 3-19
downloading and running OSEKWorks

target 3-12
downloading and running ProOSEK

target 3-20
downloading to RAM with SingleStep 3-21

ASAP2 files
generating 4-15

automatic debugging 3-28
automatic downloading 3-28

B
Base task priority option

for OSEKWorks target 4-7
for ProOSEK target 4-10

block library 6-2
blocks

Activate Task 7-2
data integrity 6-5
driver 6-6
OSEK operating system API 6-4

Board Support Packages (BSPs) 1-4
for Phytec phyCORE-MPC555 board 2-5

boards
target 1-3

Build action option
for OSEKWorks target 4-7
for ProOSEK target 4-10

build directories 4-2

C
code generation options 4-5

customization of 2-23

for OSEKWorks target 4-5
Base task priority 4-7
Build action 4-7
Force rebuild of the static libraries

used by the model 4-8
Include ErrorHook function 4-8
OSEKWorks Board Support Package

(BSP) 4-6
System Counter 4-7
System stack size 4-7
Task stack size 4-7

for ProOSEK target 4-8
Base task priority 4-10
Build action 4-10
Force rebuild of the static libraries

used by the model 4-10
Include ErrorHook function 4-11
ProOSEK Board selection 4-9
System counter increment rate 4-10
Task stack size 4-10

code generation reports 4-18
Configuration Parameters dialog

for configuring OSEKWorks taget 4-5
for configuring ProOSEK target 4-8

custom code generation options 2-23
custom makefiles 2-25
customizing code generation options 2-23

D
data integrity blocks 6-5
debugger custom support 4-13
demos 1-10

osek_led 3-31
osek_mrate 3-5

Diab cross-compiler 1-6
directories

build 4-2
HTML report 4-4
output 4-3

Index-1

Index

top-level 4-2
driver block 6-6

E
Embedded Target for OSEK/VDX

block library for 6-2
defined 1-2
features 1-4
requirements 1-5

examples
driver block 6-6
memory map 2-8
multirate 3-4
OSEKWorks 3-6
ProOSEK target 3-13

executable
downloading and running in FLASH 2-7
downloading and running in RAM 2-7

F
features 1-4
files

binary executable 3-39
demo 1-10
generated 4-2
osek_led demo 3-31
ProOSEK configuration 2-9
s-rec 3-39
test 2-6
tutorial 3-5

FLASH
downloading and running executable

in 2-7
downloading code to 3-31
enabled 3-33
executing code in 3-43
jumper setting for 2-5 2-11

Force rebuild of the static libraries used by the
model option
for OSEKWorks target 4-8
for ProOSEK target 4-10

functions
rate scheduler 5-3

G
generated code

downloading 3-22
downloading to FLASH 3-31
downloading to FLASH with SingleStep

with vision 3-39
observing 3-25
options for 4-5

generated files 4-2
GNU tools 1-7

H
hardware

setting up 2-3
hardware requirements 1-5
help

demos 1-10
getting 1-9
online 1-10
suggested reading path 1-9

hooks
customization 2-23

host platforms 1-5
HTML report 4-4

I
Include ErrorHook function option

for OSEKWorks target 4-8
for ProOSEK target 4-11

installation 1-8
setting up 2-2

Index-2

Index

verifying 2-2

J
jumper settings

for Phytec phyCORE-MPC555 board 2-3

L
libraries

Embedded Target for OSEK/VDX block 6-2
persistent object 4-12

M
makefiles 2-25

custom 2-25
MathWorks software

installing 1-8
MATLAB 1-5
memory map

configuring 2-6
examples 2-8
for OSEKWorks target 2-9
for ProOSEK target 2-9

model execution 5-2
model rates 5-4
models

configuring for OSEKWorks target 3-6
configuring for ProOSEK target 3-13

MPC555 processor 1-7
multirate example 3-4

O
object libraries 4-12
online help 1-10
options

code generation 4-5
custom code generation 2-23

OSEK operating system API blocks 6-4

OSEK task support 5-2
OSEK tasks 5-4
OSEK/VDX operating systems

standard for 1-3
supported implementations 1-3

OSEK/VDX software requirements 1-6
OSEKWorks Board Support Package

option 4-6
OSEKWorks code generation pane 4-6
OSEKWorks target

code generation options for 4-5
defined 1-4
memory map 2-9
setting up 2-14
software requirements for 1-6
startup task for 5-6
tutorial 3-6

P
Phytec phyCORE-MPC555 board 2-3

Board Support Package for 2-5
configuring jumpers for 2-22
configuring memory map for 2-6
installing Board Support Package for 2-14
jumper settings for 2-3
port connections for 2-3
support files for 2-5

port connections
for Phytec phyCORE-MPC555 board 2-3

prerequisite knowledge 1-2
processors 1-3

MPC555 1-7
ProOSEK Board selection option 4-9
ProOSEK code generation pane 4-9
ProOSEK target

code generation options for 4-8
defined 1-4
memory map 2-9
setting up 2-16

Index-3

Index

software requirements for 1-7
tutorial 3-13

R
RAM

downloading and running executable
in 2-7

downloading application to 3-21
rate scheduler functions 5-3
Real-Time Workshop 1-5
Real-Time Workshop Embedded Coder 1-5
Real-Time Workshop pane

for configuring OSEKWorks target 4-5
for configuring ProOSEK target 4-8

reports
code generation 4-18

requirements 1-5
OSEK/VDX software 1-6

S
s-rec files 3-39
Simulink 1-5
Single-Step debugger

configuring parameters 2-22
SingleStep debugger

configuring 2-19
downloading code with 3-21
downloading generated code to FLASH

with 3-33
installing 2-18
required for OSEKWorks

auto-downloading 1-6
required for ProOSEK

auto-downloading 1-7
setting up 2-18

software
installing 1-8

software requirements 1-5

System counter increment rate option 4-10
System Counter option 4-7
system stack size 4-11
System stack size option 4-7

T
target boards 1-3
target hardware 2-3

configuration of 2-3
Phytec phyCORE-MPC555 board 2-3

configuring memory map for 2-6
installing Board Support Package

for 2-14 2-16
jumper settings 2-3
port connections 2-3
support files for 2-5
test executable for 2-6

setting up 2-3
target preferences

defined 2-11
editing 2-13
properties 2-11
setting 2-11
setup window 2-13

Target Preferences Setup window 2-13
task stack size 4-11
Task stack size option

for OSEKWorks target 4-7
for ProOSEK target 4-10

task support 5-2
tasks 5-4

startup 5-6
test files 2-6
Tornado for OSEKWorks for PowerPC 1-6
tutorial, creating OSEK applications

automatic downloading and
debugging 3-28

debugging code on target system 3-25
downloading code to FLASH 3-31

Index-4

Index

downloading code to target 3-21
example model for 3-4
introduction 3-2

with OSEKWorks target 3-6
with ProOSEK target 3-13

Index-5

	toc
	Getting Started
	What Is the Embedded Target for OSEK/VDX?
	What You Need to Know to Use This Product
	MathWorks Products
	OSEK/VDX Operating System Standard
	OSEK/VDX Operating System Implementations
	Target Boards and Processors

	Features

	Hardware and Software Requirements
	Host Platform
	Hardware Requirements
	Required MathWorks Products
	OSEK/VDX Software Requirements
	Tornado for OSEKWorks for PowerPC 3.0
	ProOSEK 3.0r3 from 3SOFT, GmbH

	Installation
	Installing MathWorks Software
	Installing Other Required Software

	Getting Help with the Embedded Target for OSEK/VDX
	Suggested Reading Path
	Online Help
	Demos

	Configuring the Embedded Target for OSEK/VDX
	Setting Up and Verifying Your Installation
	Setting Up Your Target Hardware
	Physical Connections and Communications Ports
	Jumper Settings
	Special Files Provided for Use with the Phytec phyCORE-MPC555 Bo
	Board Support Package for Use with OSEKWorks
	Test Executable

	Configuring the Memory Map for the Phytec phyCORE-MPC555 Board
	Downloading and Running the Executable in RAM
	Downloading and Running the Executable in FLASH
	Other Memory Mapping Examples
	Modifying the Memory Map for the OSEKWorks Target
	Modifying the Memory Map for the ProOSEK Target

	Setting Target Preferences
	Target Preference Properties
	Editing Target Preferences

	Setting Up Your Installation for the OSEKWorks Target
	Installing the PhyCORE-555 BSP for OSEKWorks

	Setting Up Your Installation for the ProOSEK Target
	Installing the PhyCORE-555 BSP for ProOSEK

	Setting Up SingleStep
	Installing SingleStep
	Configuring SingleStep On-Chip 7.6.2
	Configuring SingleStep with Vision
	Configuring phyCORE-MPC555 Jumpers
	Configuring SingleStep Parameters

	Customization Hooks for the OSEKWorks and ProOSEK Targets
	Adding Custom Code Generation Options
	Adding Custom Makefile Variables and Rules

	Generating Real-Time OSEK/VDX Applications
	Introduction
	The Multirate Example Model
	Tutorial 1: Creating an Application with OSEKWorks
	Before You Begin
	Configuring the Model
	Building the Application
	Downloading and Running the Application

	Tutorial 2: Creating an Application with ProOSEK
	Before You Begin
	Configuring the Model
	Building the Application
	Downloading and Running the Application

	Tutorial 3: Downloading the Application to RAM via SingleStep
	Downloading the Generated Code to RAM
	Observing the Generated Code

	Tutorial 4: Automated Downloading and Debugging
	Tutorial 5: Downloading Generated Code to FLASH
	The osek_led Demo Model
	Downloading Generated Code to FLASH with SingleStep On-Chip 7.6.
	Connect to Target With FLASH Enabled
	Download Code and Execute in FLASH Memory

	Downloading Generated Code to FLASH with SingleStep with vision
	Convert S-Rec File to Binary Executable File
	Connect to Target with FLASH Enabled
	Download Code and Execute in FLASH Memory

	Generating Code, Calibration Data, and Reports
	Build Directories and Files
	Build Directory (model_implementation)
	Output Subdirectory (BSP_obj)
	HTML Report Subdirectory (optional)

	Code Generation Options
	Target-Specific Options for OSEKWorks Target
	Target-Specific Options for ProOSEK Target
	Setting System and Task Stack Size
	Efficient Use of Persistent Object Libraries
	Custom Debugger Support
	Restrictions on Code Generation Options

	Generating ASAP2 Files
	Compiler-Specific Post-Processing Requirements
	ASAP2 File Generation Procedure

	Code Generation Reports

	Model Execution
	Model Execution in the OSEK/VDX Operating Environment
	Rate Scheduler Functions
	Model Rates and OSEK/VDX Tasks
	Startup Task for OSEKWorks

	Blocks — Categorical List
	Block Library for Embedded Target for OSEK/VDX
	OSEK Operating System API Blocks
	Data Integrity Blocks
	Example Driver Block

	Blocks — Alphabetical List
	Index

	tables
	Embedded Target for OSEK/VDX Demos
	PhyCORE-MPC555 Jumper Settings for Use with On-Board BDM
	PhyCORE-MPC555 Jumper Settings for Use with External Wiggler BDM
	Phy CORE-MPC555 Jumper Settings for Execution from On-Chip FLAS
	Embedded Target for OSEK/VDX Preferences Summary

